2,478 research outputs found

    Dynamics of quantum Hall stripes in double-quantum-well systems

    Full text link
    The collective modes of stripes in double layer quantum Hall systems are computed using the time-dependent Hartree-Fock approximation. It is found that, when the system possesses spontaneous interlayer coherence, there are two gapless modes, one a phonon associated with broken translational invariance, the other a pseudospin-wave associated with a broken U(1) symmetry. For large layer separations the modes disperse weakly for wavevectors perpendicular to the stripe orientation, indicating the system becomes akin to an array of weakly coupled one-dimensional XY systems. At higher wavevectors the collective modes develop a roton minimum associated with a transition out of the coherent state with further increasing layer separation. A spin wave model of the system is developed, and it is shown that the collective modes may be described as those of a system with helimagnetic ordering.Comment: 16 pages including 7 postscript figure

    Collective Modes of Quantum Hall Stripes

    Full text link
    The collective modes of striped phases in a quantum Hall system are computed using the time-dependent Hartree-Fock approximation. Uniform stripe phases are shown to be unstable to the formation of modulations along the stripes, so that within the Hartree-Fock approximation the groundstate is a stripe crystal. Such crystalline states are generically gapped at any finite wavevector; however, in the quantum Hall system the interactions of modulations among different stripes is found to be remarkably weak, leading to an infinite collection of collective modes with immeasurably small gaps. The resulting long wavelength behavior is derivable from an elastic theory for smectic liquid crystals. Collective modes for the phonon branch are computed throughout the Brillouin zone, as are spin wave and magnetoplasmon modes. A soft mode in the phonon spectrum is identified for partial filling factors sufficiently far from 1/2, indicating a second order phase transition. The modes contain several other signatures that should be experimentally observable.Comment: 36 pages LaTex with 11 postscript figures. Short animations of the collective modes can be found at http://www.physique.usherb.ca/~rcote/stripes/stripes.ht

    Dynamics of electrons in the quantum Hall bubble phases

    Full text link
    In Landau levels N > 1, the ground state of the two-dimensional electron gas (2DEG) in a perpendicular magnetic field evolves from a Wigner crystal for small filling of the partially filled Landau level, into a succession of bubble states with increasing number of guiding centers per bubble as the filling increases, to a modulated stripe state near half filling. In this work, we show that these first-order phase transitions between the bubble states lead to measurable discontinuities in several physical quantities such as the density of states and the magnetization of the 2DEG. We discuss in detail the behavior of the collective excitations of the bubble states and show that their spectra have higher-energy modes besides the pinned phonon mode. The frequencies of these modes, at small wavevector k, have a discontinuous evolution as a function of filling factor that should be measurable in, for example, microwave absorption experiments.Comment: 13 pages, 7 figures. Corrected typos in eqs. (38),(39),(40

    Surface Contribution to Raman Scattering from Layered Superconductors

    Full text link
    Generalizing recent work, the Raman scattering intensity from a semi-infinite superconducting superlattice is calculated taking into account the surface contribution to the density response functions. Our work makes use of the formalism of Jain and Allen developed for normal superlattices. The surface contributions are shown to strongly modify the bulk contribution to the Raman-spectrum line shape below 2Δ2\Delta, and also may give rise to additional surface plasmon modes above 2Δ2\Delta. The interplay between the bulk and surface contribution is strongly dependent on the momentum transfer qq_\parallel parallel to layers. However, we argue that the scattering cross-section for the out-of-phase phase modes (which arise from interlayer Cooper pair tunneling) will not be affected and thus should be the only structure exhibited in the Raman spectrum below 2Δ2\Delta for relatively large q0.1Δ/vFq_\parallel\sim 0.1\Delta/v_F. The intensity is small but perhaps observable.Comment: 14 pages, RevTex, 6 figure

    Spectroscopic determination of the s-wave scattering lengths of 86Sr and 88Sr

    Get PDF
    We report the use of photoassociative spectroscopy to determine the ground state s-wave scattering lengths for the main bosonic isotopes of strontium, 86Sr and 88Sr. Photoassociative transitions are driven with a laser red-detuned by up to 1400 GHz from the 1S0-1P1 atomic resonance at 461 nm. A minimum in the transition amplitude for 86Sr at -494+/-5 GHz allows us to determine the scattering lengths 610a0 < a86 < 2300a0 for 86Sr and a much smaller value of -1a0 < a88 < 13a0 for 88Sr.Comment: 4 pages, 3 figures, submitted to Physical Review Letter

    Atom loss from Bose-Einstein condensates due to Feshbach resonance

    Full text link
    In recent experiments on Na Bose-Einstein condensates [S. Inouye et al, Nature 392, 151 (1998); J. Stenger et al, Phys. Rev. Lett. 82, 2422 (1999)], large loss rates were observed when a time-varying magnetic field was used to tune a molecular Feshbach resonance state near the state of pairs of atoms belonging to the condensate many-body wavefunction. A mechanism is offered here to account for the observed losses, based on the deactivation of the resonant molecular state by interaction with a third condensate atom.Comment: LaTeX, 4 pages, 4 PostScript figures, uses REVTeX and psfig, submitted to Physical Review A, Rapid Communication

    Innovative Technique for Below the Knee Arterial Revascularisation Using Porcine Self Made Stapled Pericardial Tube Grafts.

    Get PDF
    When no autologous vein is available for distal bypass in the setting of chronic limb threatening ischaemia (CLTI), new alternatives are required to solve the problems of availability, patency, and resistance to infection. An innovative technique of below the knee bypass for CLTI using a porcine self made stapled pericardial tube graft is reported. An 84 year old man, admitted with right CLTI with foot infection due to long occlusion of the femoropopliteal segment, required urgent revascularisation. In the absence of autologous vein and cryopreserved vessels, a 4 mm self made stapled porcine pericardial tube graft 56 cm long was created from two 14 × 8 cm patches, to perform a femorotibioperoneal trunk bypass. On day 10, bypass thrombectomy and balloon angioplasty of the distal anastomosis were needed to treat early occlusion. Oral anticoagulation was then started. Right toe pressure increased from 0 to 70 mmHg, and no infection was reported. Complete wound healing was achieved. At six months, the bypass was still patent. The use of porcine self made stapled pericardial tube grafts could offer new options for revascularisation in CLTI. Larger cohort studies with longer follow up are needed to confirm this successful preliminary experience

    Raman signatures of classical and quantum phases in coupled dots: A theoretical prediction

    Get PDF
    We study electron molecules in realistic vertically coupled quantum dots in a strong magnetic field. Computing the energy spectrum, pair correlation functions, and dynamical form factor as a function of inter-dot coupling via diagonalization of the many-body Hamiltonian, we identify structural transitions between different phases, some of which do not have a classical counterpart. The calculated Raman cross section shows how such phases can be experimentally singled out.Comment: 9 pages, 2 postscript figures, 1 colour postscript figure, Latex 2e, Europhysics Letters style and epsfig macros. Submitted to Europhysics Letter
    corecore