74 research outputs found
Disorder and interactions in quantum Hall ferromagnets: effects of disorder in Skyrmion physics
We present a Hartree-Fock study of the competition between disorder and
interactions in quantum Hall ferromagnets near . We find that the ground
state at evolves with increasing interaction strength from a
quasi-metallic paramagnet, to a partially spin-polarized ferromagnetic Anderson
insulator, and to a fully spin-polarized ferromagnet with a charge gap. Away
from , the ground state evolves from a conventional Anderson insulator,
to a conventional quasiparticle glass, and finally to a ferromagnetic Skyrmion
quasiparticle glass. These different regimes can be measured in low-temperature
transport and NMR experiments. We present calculations for the NMR spectra in
different disorder regimes.Comment: 3 pages, 3 figures, proceedings for EP2DS-14, Prague 200
ISPIDER Central: an integrated database web-server for proteomics
Despite the growing volumes of proteomic data, integration of the underlying results remains problematic owing to differences in formats, data captured, protein accessions and services available from the individual repositories. To address this, we present the ISPIDER Central Proteomic Database search (http://www.ispider.manchester.ac.uk/cgi-bin/ProteomicSearch.pl), an integration service offering novel search capabilities over leading, mature, proteomic repositories including PRoteomics IDEntifications database (PRIDE), PepSeeker, PeptideAtlas and the Global Proteome Machine. It enables users to search for proteins and peptides that have been characterised in mass spectrometry-based proteomics experiments from different groups, stored in different databases, and view the collated results with specialist viewers/clients. In order to overcome limitations imposed by the great variability in protein accessions used by individual laboratories, the European Bioinformatics Institute's Protein Identifier Cross-Reference (PICR) service is used to resolve accessions from different sequence repositories. Custom-built clients allow users to view peptide/protein identifications in different contexts from multiple experiments and repositories, as well as integration with the Dasty2 client supporting any annotations available from Distributed Annotation System servers. Further information on the protein hits may also be added via external web services able to take a protein as input. This web server offers the first truly integrated access to proteomics repositories and provides a unique service to biologists interested in mass spectrometry-based proteomics
Quantum fluctuations of classical skyrmions in quantum Hall Ferromagnets
In this article, we discuss the effect of the zero point quantum fluctuations
to improve the results of the minimal field theory which has been applied to
study %SMG the skyrmions in the quantum Hall systems. Our calculation which is
based on the semiclassical treatment of the quantum fluctuations, shows that
the one-loop quantum correction provides more accurate results for the minimal
field theory.Comment: A few errors are corrected. Accepted for publication in Rapid
Communication, Phys. Rev.
Hamiltonian Theory of the Composite Fermion Wigner Crystal
Experimental results indicating the existence of the high magnetic field
Wigner Crystal have been available for a number of years. While variational
wavefunctions have demonstrated the instability of the Laughlin liquid to a
Wigner Crystal at sufficiently small filling, calculations of the excitation
gaps have been hampered by the strong correlations. Recently a new Hamiltonian
formulation of the fractional quantum Hall problem has been developed. In this
work we extend the Hamiltonian approach to include states of nonuniform
density, and use it to compute the excitation gaps of the Wigner Crystal
states. We find that the Wigner Crystal states near are
quantitatively well described as crystals of Composite Fermions with four
vortices attached. Predictions for gaps and the shear modulus of the crystal
are presented, and found to be in reasonable agreement with experiments.Comment: 41 page, 6 figures, 3 table
Exotic Quantum Order in Low-Dimensional Systems
Strongly correlated quantum systems in low dimensions often exhibit novel
quantum ordering. This ordering is sometimes hidden and can be revealed only by
examining new `dual' types of correlations. Such ordering leads to novel
collective modes and fractional quantum numbers. Examples will be presented
from quantum spin chains and the quantum Hall effect.Comment: To appear in Solid State Communications, Proceedings of Symposium on
the Advancing Frontiers in Condensed Matter Science. 12pages +6 PS figure
Massive skyrmions in quantum Hall ferromagnets
We apply the theory of elasticity to study the effects of skyrmion mass on
lattice dynamics in quantum Hall systems. We find that massive Skyrme lattices
behave like a Wigner crystal in the presence of a uniform perpendicular
magnetic field. We make a comparison with the microscopic Hartree-Fock results
to characterize the mass of quantum Hall skyrmions at and investigate
how the low temperature phase of Skyrme lattices may be affected by the
skyrmion mass.Comment: 6 pages and 2 figure
Critical Currents of Ideal Quantum Hall Superfluids
Filling factor bilayer electron systems in the quantum Hall regime
have an excitonic-condensate superfluid ground state when the layer separation
is less than a critical value . On a quantum Hall plateau current
injected and removed through one of the two layers drives a dissipationless
edge current that carries parallel currents, and a dissipationless bulk
supercurrent that carries opposing currents in the two layers. In this paper we
discuss the theory of finite supercurrent bilayer states, both in the presence
and in the absence of symmetry breaking inter-layer hybridization. Solutions to
the microscopic mean-field equations exist at all condensate phase winding
rates for zero and sufficiently weak hybridization strengths. We find, however,
that collective instabilities occur when the supercurrent exceeds a critical
value determined primarily by a competition between direct and exchange
inter-layer Coulomb interactions. The critical current is estimated using a
local stability criterion and varies as when approaches
from below. For large inter-layer hybridization, we find that the
critical current is limited by a soliton instability of microscopic origin.Comment: 18 RevTeX pgs, 21 eps figure
Schwinger boson theory of anisotropic ferromagnetic ultrathin films
Ferromagnetic thin films with magnetic single-ion anisotropies are studied
within the framework of Schwinger bosonization of a quantum Heisenberg model.
Two alternative bosonizations are discussed. We show that qualitatively correct
results are obtained even at the mean-field level of the theory, similar to
Schwinger boson results for other magnetic systems. In particular, the
Mermin-Wagner theorem is satisfied: a spontaneous magnetization at finite
temperatures is not found if the ground state of the anisotropic system
exhibits a continuous degeneracy. We calculate the magnetization and effective
anisotropies as functions of exchange interaction, magnetic anisotropies,
external magnetic field, and temperature for arbitrary values of the spin
quantum number. Magnetic reorientation transitions and effective anisotropies
are discussed. The results obtained by Schwinger boson mean-field theory are
compared with the many-body Green's function technique.Comment: 14 pages, including 7 EPS figures, minor changes, final version as
publishe
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC
Measurements of inclusive jet suppression in heavy ion collisions at the LHC
provide direct sensitivity to the physics of jet quenching. In a sample of
lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated
luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with
a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the
transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the
anti-kt algorithm with values for the distance parameter that determines the
nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of
the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp.
Jet production is found to be suppressed by approximately a factor of two in
the 10% most central collisions relative to peripheral collisions. Rcp varies
smoothly with centrality as characterized by the number of participating
nucleons. The observed suppression is only weakly dependent on jet radius and
transverse momentum. These results provide the first direct measurement of
inclusive jet suppression in heavy ion collisions and complement previous
measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables,
submitted to Physics Letters B. All figures including auxiliary figures are
available at
http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02
- …