3 research outputs found

    Design of bifunctional 1D nanostructures for the catalytic conversion of carbon dioxide into cyclic carbonates

    No full text
    One dimensional silica-based nanotubes represent an innovative and promising morphology in the context of heterogeneous catalysis. Here these nanostructures were prepared for the first time as bifunctional materials, with hafnium or tin atoms inserted as single sites in the silica structure and imidazolium moieties anchored at the surface. The low dimensional solids thus present both acid sites owing to the presence of metal cations in tetrahedral coordination (co-catalyst) and nucleophilic species coming from the counterion of the imidazolium moieties (catalyst). The design of the catalysts consisted of two main steps. The Hf- or Sn-doped silica solids were initially prepared using a straightforward sol-gel method including a pH adjustment step allowing a quantitative insertion of the metal cations in the silica framework. These materials were post-functionalized with imidazolium moieties. The solids were extensively characterized thus confirming the presence of well-defined and open tubular structure, high specific surface area, successful insertion of Hf and Sn in the silica framework, and a correct functionalization with imidazolium salts. The different catalysts were tested in the valorization of CO2 with styrene oxide to give the corresponding cyclic carbonate. The bifunctional solids were stable and recyclable. The versatility of the best catalyst, represented by the Hf-based material, was confirmed using different epoxides. Finally, by tuning the reaction conditions or changing the imidazolium salt, a further boost of the catalytic performances was achieved.</p

    Phosphonium Salt/Al-Porphyrin Copolymer as Bifunctional Heterogeneous Catalyst for CO<sub>2</sub> Conversion to Cyclic Carbonates

    No full text
    The effective chemical valorization of CO2 by means of its conversion into valuable products is now more than ever a topic of considerable interest. It is on that basis that herein we have chosen the conversion of CO2 and epoxides to cyclic carbonates as a convenient route to achieve this goal. A new bifunctional (Lewis acid/nucleophile) heterogeneous material, TSP-AlCl-PhospBr, was designed in order to guarantee a close proximity between the two active sites that can cooperate to the activation and opening of the epoxide ring. The prepared copolymer has been extensively characterized using various spectroscopic and analytical techniques. As a heterogeneous catalyst, it enables efficient chemical conversion of CO2 and epoxides, even at low temperatures, down to 30 °C, without the use of solvents. In particular, the catalyst demonstrates high turnover numbers (TON) and frequency values (TOF). Recyclability studies on TSP-AlCl-PhospBr have shown its stability and reusability for consecutive cycles without the need of reactivation procedures.</p

    Hafnium-doped silica nanotubes for the upgrading of glycerol into solketal: Enhanced performances and in-depth structure-activity correlation

    No full text
    An unprecedented type of Hf-doped silica nanotubes was synthesized using a straightforward one-pot sol–gel procedure. The well-defined nanotubes with a diameter of 14–20 nm exhibited high specific surface area and a widely open texture. The method – involving a key pH adjustment step – allowed a quantitative insertion of hafnium in the materials (Si/Hf = 74) and favored the insertion of Hf as dispersed species. Depending on the synthesis parameters, the chemical environment around Hf was modified, as evidenced by XPS, NH3-TPD and NH3-IR. Hf-doped silica nanotubes showed excellent activity in the conversion of glycerol to solketal, a reaction of high relevance in the context of biorefineries. Importantly, the turnover frequency and the acidity were unambiguously correlated with the insertion of Hf in the silica matrix. The best catalyst was proven to be stable and recyclable, and this sustainable reaction was also amenable to further catalytic enhancement upon optimized reaction conditions
    corecore