15 research outputs found

    Sex-Dependent Motor Deficit and Increased Anxiety-Like States in Mice Lacking Autism-Associated Gene Slit3

    Get PDF
    Altered neuronal connectivity has been implicated in the pathophysiology of Autism Spectrum Disorder (ASD). SLIT/ROBO signaling plays an important role in developmental processes of neuronal connectivity, including axon guidance, neuronal migration, and axonal and dendritic branching. Genetic evidence supports that SLIT3, one of the genes encoding SLITs, is associated with ASD. Yet the causal link between SLIT3 mutation and autism symptoms has not been examined. Here we assessed ASD-associated behaviors in Slit3 knockout (KO) mice. Our data showed that Slit3-KO mice exhibited reduced marble burying behaviors but normal social behaviors. In addition, Slit3-KO mice displayed hypolocomotion in the open field test and impaired motor coordination in the rotarod test. Anxiety-like behaviors were mainly observed in female KO mice assessed by three types of behavioral tests, namely, the open field test, elevated plus maze test, and light/dark box test. No differences were observed between KO and wildtype mice in recognition memory in the novel object recognition test or depression-like behavior in the tail suspension test. Taken together, loss of Slit3 may result in disrupted neural circuits related to motor function and increased anxiety-like states, which are co-occurring symptoms in ASD

    The transcription factor Nfix is essential for normal brain development

    Get PDF
    Background: The Nuclear Factor I (NFI) multi-gene family encodes site-specific transcription factors essential for the development of a number of organ systems. We showed previously that Nfia-deficient mice exhibit agenesis of the corpus callosum and other forebrain defects; Nfib-deficient mice have defects in lung maturation and show callosal agenesis and forebrain defects resembling those seen in Nfia-deficient animals, while Nficdeficient mice have defects in tooth root formation. Recently the Nfix gene has been disrupted and these studies indicated that there were largely uncharacterized defects in brain and skeletal development in Nfix-deficient mice. Results: Here we show that disruption of Nfix by Cre-recombinase mediated excision of the 2nd exon results in defects in brain development that differ from those seen in Nfia and Nfib KO mice. In particular, complete callosal agenesis is not seen in Nfix-/- mice but rather there appears to be an overabundance of aberrant Pax6- and doublecortin-positive cells in the lateral ventricles of Nfix-/- mice, increased brain weight, expansion of the cingulate cortex and entire brain along the dorsal ventral axis, and aberrant formation of the hippocampus. On standard lab chow Nfix-/- animals show a decreased growth rate from ~P8 to P14, lose weight from ~P14 to P22 and die at ~P22. If their food is supplemented with a soft dough chow from P10, Nfix-/- animals show a lag in weight gain from P8 to P20 but then increase their growth rate. A fraction of the animals survive to adulthood and are fertile. The weight loss correlates with delayed eye and ear canal opening and suggests a delay in the development of several epithelial structures in Nfix-/- animals. Conclusion: These data show that Nfix is essential for normal brain development and may be required for neural stem cell homeostasis. The delays seen in eye and ear opening and the brain morphology defects appear independent of the nutritional deprivation, as rescue of perinatal lethality with soft dough does not eliminate these defects

    Astrocytes repress the neuronal expression of GLAST and GLT glutamate transporters in cultured hippocampal neurons from embryonic rats.

    No full text
    International audienceGlutamate extracellular levels are regulated by specific transporters. Five subtypes have been identified. The two major ones, GLAST and GLT (glutamate transporters 1 and 2, respectively), are localized in astroglia in normal mature brain. However, in neuron-enriched hippocampal cultures, these proteins are expressed in neurons during the early in vitro development (Plachez et al., 2000). Here, we show that, in these cultures, GLAST and GLT neuronal expression is transient and no longer observed after 7 days in vitro, a stage at which the few astrocytes present in the culture are maturing. Moreover, we demonstrate that these few astrocytes are responsible for the repression of this neuronal expression. Indeed, addition of conditioned medium prepared from primary cultures of hippocampal astrocytes, to cultured hippocampal neurons, rapidly leads to the suppression of neuronal GLAST expression, without affecting neuronal GLT expression. However, when neurons are seeded and co-cultured on a layer of hippocampal astrocytes, they do not develop any immunoreactivity towards GLAST or GLT antibodies. Altogether, these results indicate that glia modulate the expression of GLAST and GLT glutamate transporters in neurons, via at least two distinct mechanisms. Neuronal GLAST expression is likely repressed via the release or the uptake of soluble factors by glia. The repression of neuronal GLT expression probably results from glia-neuron interactions. This further reinforces the fundamental role of direct or indirect neuron-glia interactions in the development of the central nervous system

    Expression of glutamate transporters in the medial and lateral vestibular nuclei during rat postnatal development.

    No full text
    The postnatal developmental expression and the distribution of the glutamate transporters (GLAST, GLT-1 and EAAC1) were analyzed in rat vestibular nuclei (VN), at birth and during the following 4 weeks. Analyses were performed using reverse transcriptase-polymerase chain reaction and immunoblotting of GLAST, GLT-1 and EAAC1 mRNA and protein during the postnatal development of the VN neurons and their afferent connections. We also studied the distribution of each glutamate transporter in the medial and lateral VN by use of immunocytochemistry and confocal microscopy. GLAST, GLT-1 and EAAC1 mRNA and protein were present in the VN at each developmental stage. GLAST was highly expressed mainly in glia from birth to the adult stage, its distribution pattern was heterogeneous depending on the region of the medial and lateral VN. GLT-1 expression increased dramatically during the second and third postnatal weeks. At least during the first postnatal week, GLT-1 was expressed in the soma of neurons. EAAC1 was detected in neurons and decreased from the third week. These temporal and regional patterns of GLAST, GLT-1 and EAAC1 suggest that they play different roles in the maturation of glutamatergic synaptic transmission in the medial and lateral VN during postnatal development

    Emx and Nfi Genes Regulate Cortical Development and Axon Guidance in the Telencephalon

    No full text
    The Emx and Nuclear Factor One (Nfi) genes encode transcription factors that regulate numerous embryonic developmental processes. The two mammalian Emx genes, Emx1 and Emx2, are expressed in the embryonic cortex and regulate the specification of the cortex into different sensory and motor areas along the rostrocaudal axis. To date, few developmental processes have been attributed specifically to Emx1, with most analyses demonstrating a redundancy of function between Emx1 and Emx2, with Emx2 being most essential for development. Here we provide evidence that Emx1 and Emx2 regulate different developmental processes during corpus callosum formation and review how both genes function in cellular migration and the formation of cortical axon projections. The Nfi gene family is made up of four members, Nfia, Nfib, Nfic and Nfix. Expression analyses show that Nfia, Nfib and Nfix are expressed in the developing telencephalon. They play roles in patterning, glial development, cortical cell migration and axon guidance. We review the role of these genes in cortical cell migration, glial development and the formation of cortical axon projections, and examine the overlapping mutant phenotypes between the Emx and Nfi gene families

    Emx and Nfi genes regulate cortical development and axon guidance in the telencephalon

    No full text
    The Emx and Nuclear Factor One (Nfi) genes encode transcription factors that regulate numerous embryonic developmental processes. The two mammalian Emx genes, Emx1 and Emx2, are expressed in the embryonic cortex and regulate the specification of the cortex into different sensory and motor areas along the rostrocaudal axis. To date, few developmental processes have been attributed specifically to Emx1, with most analyses demonstrating a redundancy of function between Emx1 and Emx2, with Emx2 being most essential for development. Here we provide evidence that Emx1 and Emx2 regulate different developmental processes during corpus callosum formation and review how both genes function in cellular migration and the formation of cortical axon projections. The Nfi gene family is made up of four members, Nfia, Nfib, Nfic and Nfix. Expression analyses show that Nfia, Nfib and Nfix are expressed in the developing telencephalon. They play roles in patterning, glial development, cortical cell migration and axon guidance. We review the role of these genes in cortical cell migration, glial development and the formation of cortical axon projections, and examine the overlapping mutant phenotypes between the Emx and Nfi gene families

    The Transcription Factor Gene Nfib Is Essential for both Lung Maturation and Brain Development

    No full text
    The phylogenetically conserved nuclear factor I (NFI) gene family encodes site-specific transcription factors essential for the development of a number of organ systems. We showed previously that Nfia-deficient mice exhibit agenesis of the corpus callosum and other forebrain defects, whereas Nfic-deficient mice have agenesis of molar tooth roots and severe incisor defects. Here we show that Nfib-deficient mice possess unique defects in lung maturation and exhibit callosal agenesis and forebrain defects that are similar to, but more severe than, those seen in Nfia-deficient animals. In addition, loss of Nfib results in defects in basilar pons formation and hippocampus development that are not seen in Nfia-deficient mice. Heterozygous Nfib-deficient animals also exhibit callosal agenesis and delayed lung maturation, indicating haploinsufficiency at the Nfib locus. The similarity in brain defects in Nfia- and Nfib-deficient animals suggests that these two genes may cooperate in late fetal forebrain development, while Nfib is essential for late fetal lung maturation and development of the pons

    Robos are required for the correct targeting of retinal ganglion cell axons in the visual pathway of the brain

    No full text
    Axonal projections from the retina to the brain are regulated by molecules including the Slit family of ligands [Thompson, H., Barker, D., Camand, O., Erskine, L., 2006a. Slits contribute to the guidance of retinal ganglion cell axons in the mammalian optic tract. Dev. Biol. 296, 476–484, Thompson, H., Camand, O., Barker, D., Erskine, L., 2006b. Slit proteins regulate distinct aspects of retinal ganglion cell axon guidance within dorsal and ventral retina. J. Neurosci. 26, 8082–8091]. However, the roles of Slit receptors in mammals, (termed Robos), have not been investigated in visual system development. Here we examined Robo1 and 2 mutant mice and found that Robos regulate the correct targeting of retinal ganglion cell (RGC) axons along the entire visual projection. We noted aberrant projections of RGC axons into the cerebral cortex, an area not normally targeted by RGC axons. The optic chiasm was expanded along the rostro-caudal axis (similar to Slit mutant mice, Plump, A.S., Erskine, L., Sabatier, C., Brose, K., Epstein, C.J., Goodman, C.S., Mason, C.A., Tessier-Lavigne, M., 2002. Slit1 and Slit2 cooperate to prevent premature midline crossing of retinal axons in the mouse visual system. Neuron 33, 219–232), with ectopic crossing points, and some axons projecting caudally toward the corticospinal tract. Further, we found that axons exuberantly projected into the diencephalon. These defects were more pronounced in Robo2 than Robo1 knockout animals, implicating Robo2 as the predominant Robo receptor in visual system development
    corecore