1,216 research outputs found

    Redesign of machine component in polymeric matrix composite towards increased productivity

    Get PDF
    This work is focused in the maximization of the acceleration a 2D Industrial Laser Cutting Machine (ILCM). The changes to be implemented are centered in the replacement of a metallic critical component: the gantry. This component largely influences precision and maximum acceleration. Finite Elements Analysis was performed to the current metallic part. From this analysis the maximum allowed deformations were established. A replacement composite component capable of an equally valid behavior was designed in carbon fiber. To establish the maximum increase in acceleration that does not lead to precision losses, the working conditions were simulated and the acceleration to which the component was subjected to was varied. The variation of the thickness of layers with different orientations and locations in the part allowed for the understanding of how the mass varies along with the maximum possible acceleration. This analysis, asides with considering the maximum force allowed by the linear motor that is responsible by the gantry motion, establishes the limit in terms of maximum acceleration of the machine. An increase of 22% in the maximum acceleration while maintaining the precision is possible due to the higher specific rigidity of composite materials and the use of an optimization heuristic

    Spectral and Localization Properties for the One-Dimensional Bernoulli Discrete Dirac Operator

    Full text link
    A 1D Dirac tight-binding model is considered and it is shown that its nonrelativistic limit is the 1D discrete Schr?odinger model. For random Bernoulli potentials taking two values (without correlations), for typical realizations and for all values of the mass, it is shown that its spectrum is pure point, whereas the zero mass case presents dynamical delocalization for specific values of the energy. The massive case presents dynamical localization (excluding some particular values of the energy). Finally, for general potentials the dynamical moments for distinct masses are compared, especially the massless and massive Bernoulli cases.Comment: no figure; 24 pages; to appear in Journal of Mathematical Physic

    Redesign of an industrial laser cutting machine’s gantry in composite material

    Get PDF
    This work is focused in the design stage of a composite structure intended to replace a metallic critical component in a 2D Industrial Laser Cutting Machine (ILCM). The component is the gantry, largely responsible for most of the ILCM’s characteristics. These include precision and maximum acceleration, which are critical. The dimensioning of the component is initially performed based on analytical models, but latter stages use the numerical capabilities of Finite Elements Method. In the end it is possible to take advantage of the higher specific rigidity of composite materials to increase the maximum acceleration that the machine allows for while maintaining the precision.(undefined

    A Quantitative Evaluation of the Galaxy Component of COSMOS and APM Catalogs

    Get PDF
    We have carried out an independent quantitative evaluation of the galaxy component of the "COSMOS/UKST Southern Sky Object Catalogue" (SSC) and the "APM/UKST J Catalogue" (APM). Using CCD observations our results corroborate the accuracy of the photometry of both catalogs, which have an overall dispersion of about 0.2 mag in the range 17 <= b_J <= 21.5. The SSC presents externally calibrated galaxy magnitudes that follow a linear relation, while the APM instrumental magnitudes of galaxies, only internally calibrated by the use of stellar profiles, require second-order corrections. The completeness of both catalogs in a general field falls rapidly fainter than b_J = 20.0, being slightly better for APM. The 90% completeness level of the SSC is reached between b_J = 19.5 and 20.0, while for APM this happens between b_J = 20.5 and 21.0. Both SSC and APM are found to be less complete in a galaxy cluster field. Galaxies misclassified as stars in the SSC receive an incorrect magnitude because the stellar ones take saturation into account besides using a different calibration curve. In both cases, the misclassified galaxies show a large diversity of colors that range from typical colors of early-types to those of blue star-forming galaxies. A possible explanation for this effect is that it results from the combination of low sampling resolutions with properties of the image classifier for objects with characteristic sizes close to the instrumental resolution. We find that the overall contamination by stars misclassified as galaxies is < 5% to b_J = 20.5, as originally estimated for both catalogs. Although our results come from small areas of the sky, they are extracted from two different plates and are based on the comparison with two independent datasets.Comment: 14 pages of text and tables, 8 figures; to be published in the Astronomical Journal; for a single postscript version file see ftp://danw.on.br/outgoing/caretta/caretta.p

    Primordial fluctuations and cosmological inflation after WMAP 1.0

    Full text link
    The observational constraints on the primordial power spectrum have tightened considerably with the release of the first year analysis of the WMAP observations, especially when combined with the results from other CMB experiments and galaxy redshift surveys. These observations allow us to constrain the physics of cosmological inflation: (i) The data show that the Hubble distance is almost constant during inflation. While observable modes cross the Hubble scale, it changes by less than 3% during one e-folding: d(d_H)/dt < 0.032 at 2 sigma. The distance scale of inflation itself remains poorly constrained: 1.2 x 10^{-28} cm < d_H < 1 cm. (ii) We present a new classification of single-field inflationary scenarios (including scenarios beyond slow-roll inflation), based on physical criteria, namely the behaviour of the kinetic and total energy densities of the inflaton field. The current data show no preference for any of the scenarios. (iii) For the first time the slow-roll assumption could be dropped from the data analysis and replaced by the more general assumption that the Hubble scale is (almost) constant during the observable part of inflation. We present simple analytic expressions for the scalar and tensor power spectra for this very general class of inflation models and test their accuracy.Comment: 19 pages, 5 figures; section on the classification of models in the plane of tilt and tensor-to-scalar ratio added, references adde

    No-match ORESTES explored as tumor markers

    Get PDF
    Sequencing technologies and new bioinformatics tools have led to the complete sequencing of various genomes. However, information regarding the human transcriptome and its annotation is yet to be completed. The Human Cancer Genome Project, using ORESTES (open reading frame EST sequences) methodology, contributed to this objective by generating data from about 1.2 million expressed sequence tags. Approximately 30% of these sequences did not align to ESTs in the public databases and were considered no-match ORESTES. On the basis that a set of these ESTs could represent new transcripts, we constructed a cDNA microarray. This platform was used to hybridize against 12 different normal or tumor tissues. We identified 3421 transcribed regions not associated with annotated transcripts, representing 83.3% of the platform. The total number of differentially expressed sequences was 1007. Also, 28% of analyzed sequences could represent noncoding RNAs. Our data reinforces the knowledge of the human genome being pervasively transcribed, and point out molecular marker candidates for different cancers. To reinforce our data, we confirmed, by real-time PCR, the differential expression of three out of eight potentially tumor markers in prostate tissues. Lists of 1007 differentially expressed sequences, and the 291 potentially noncoding tumor markers were provided

    No-match ORESTES explored as tumor markers

    Get PDF
    Sequencing technologies and new bioinformatics tools have led to the complete sequencing of various genomes. However, information regarding the human transcriptome and its annotation is yet to be completed. The Human Cancer Genome Project, using ORESTES (open reading frame EST sequences) methodology, contributed to this objective by generating data from about 1.2 million expressed sequence tags. Approximately 30% of these sequences did not align to ESTs in the public databases and were considered no-match ORESTES. On the basis that a set of these ESTs could represent new transcripts, we constructed a cDNA microarray. This platform was used to hybridize against 12 different normal or tumor tissues. We identified 3421 transcribed regions not associated with annotated transcripts, representing 83.3% of the platform. The total number of differentially expressed sequences was 1007. Also, 28% of analyzed sequences could represent noncoding RNAs. Our data reinforces the knowledge of the human genome being pervasively transcribed, and point out molecular marker candidates for different cancers. To reinforce our data, we confirmed, by real-time PCR, the differential expression of three out of eight potentially tumor markers in prostate tissues. Lists of 1007 differentially expressed sequences, and the 291 potentially noncoding tumor markers were provided

    Bound states in open coupled asymmetrical waveguides and quantum wires

    Full text link
    The behavior of bound states in asymmetric cross, T and L shaped configurations is considered. Because of the symmetries of the wavefunctions, the analysis can be reduced to the case of an electron localized at the intersection of two orthogonal crossed wires of different width. Numerical calculations show that the fundamental mode of this system remains bound for the widths that we have been able to study directly; moreover, the extrapolation of the results obtained for finite widths suggests that this state remains bound even when the width of one arm becomes infinitesimal. We provide a qualitative argument which explains this behavior and that can be generalized to the lowest energy states in each symmetry class. In the case of odd-odd states of the cross we find that the lowest mode is bounded when the width of the two arms is the same and stays bound up to a critical value of the ratio between the widths; in the case of the even-odd states we find that the lowest mode is unbound up to a critical value of the ratio between the widths. Our qualitative arguments suggest that the bound state survives as the width of the vertical arm becomes infinitesimal.Comment: 11 pages, 19 figures, 3 table
    corecore