6,375 research outputs found
Quark-Model Baryon-Baryon Interaction and its Applications to Hypernuclei
The quark-model baryon-baryon interaction fss2, proposed by the Kyoto-Niigata
group, is a unified model for the complete baryon octet (B_8=N, Lambda, Sigma
and Xi), which is formulated in a framework of the (3q)-(3q) resonating-group
method (RGM) using the spin-flavor SU_6 quark-model wave functions and
effective meson-exchange potentials at the quark level. Model parameters are
determined to reproduce properties of the nucleon-nucleon system and the
low-energy cross section data for the hyperon-nucleon scattering. Due to the
several improvements including the introduction of vector-meson exchange
potentials, fss2 has achieved very accurate description of the NN and YN
interactions, comparable to various one-boson exchange potentials. We review
the essential features of fss2 and our previous model FSS, and their
predictions to few-body systems in confrontation with the available
experimental data. Some characteristic features of the B_8 B_8 interactions
with the higher strangeness, S=-2, -3, -4, predicted by fss2 are discussed.
These quark-model interactions are now applied to realistic calculations of
few-body systems in a new three-cluster Faddeev formalism which uses
two-cluster RGM kernels. As for the few-body systems, we discuss the
three-nucleon bound states, the Lambda NN-Sigma NN system for the hypertriton,
the alpha alpha Lambda system for 9Be Lambda, and the Lambda Lambda alpha
system for 6He Lambda Lambda.Comment: 20 pages, 12 figures, 18th Nishinomiya Yukawa Memorial Symposium on
Strangeness in Nuclear Matter, 4 - 5 December 2003, Nishinomiya, Japan. (to
be published in Prog. Theor. Phys. Suppl.
Analysis Of Measured Transport Properties Of Domain Walls In Magnetic Nanowires And Films
Existing data for soft magnetic materials of critical current for domain-wall
motion, wall speed driven by a magnetic field, and wall electrical resistance,
show that all three observable properties are related through a single
parameter: the wall mobility . The reciprocal of represents the
strength of viscous friction between domain wall and conduction-electron gas.
And is a function of the wall width, which depends in turn on the aspect
ratio t/w, where t and w are the thickness and width of the sample. Over four
orders of magnitude of , the data for nanowires show . This dependence is in approximate agreement with the prediction
of the 1984 Berger theory based on s-d exchange. On the other hand, it is
inconsistent with the prediction of the 2004 Tatara and Kohno theory, and of
the 2004 Zhang and Li theory.Comment: 7 pages, 1 figure; submitted to Phys. Rev.
Spontaneous breaking of the Fermi surface symmetry in the t-J model: a numerical study
We present a variational Monte Carlo (VMC) study of spontaneous Fermi surface
symmetry breaking in the t-J model. We find that the variational energy of a
Gutzwiller projected Fermi sea is lowered by allowing for a finite asymmetry
between the x- and the y-directions. However, the best variational state
remains a pure superconducting state with d-wave symmetry, as long as the
underlying lattice is isotropic. Our VMC results are in good overall agreement
with slave boson mean field theory (SBMFT) and renormalized mean field theory
(RMFT), although apparent discrepancies do show up in the half-filled limit,
revealing some limitations of mean field theories. VMC and complementary RMFT
calculations also confirm the SBMFT predictions that many-body interactions can
enhance any anisotropy in the underlying crystal lattice. Thus, our results may
be of consequence for the description of strongly correlated superconductors
with an anisotropic lattice structure.Comment: 6 pages, 7 figures; final versio
Current-induced non-adiabatic spin torques and domain wall motion with spin relaxation in a ferromagnetic metallic wire
Within the s-d model description, we derive the current-driven spin torque in
a ferromagnet, taking explicitly into account a spin-relaxing Caldeira-Leggett
bath coupling to the s-electrons. We derive Bloch-Redfield equations of motion
for the s-electron spin dynamics, and formulate a systematic gradient expansion
to obtain non-adiabatic (higher-order) corrections to the well-known adiabatic
(first-order) spin torque. We provide simple analytical expressions for the
second-order spin torque. The theory is applied to current-driven domain wall
motion. Second-order contributions imply a deformation of a transverse
tail-to-tail domain wall. The wall center still moves with a constant velocity
that now depends on the spin-polarized current in a non-trivial manner.Comment: Phys. Rev. B, in press, replaced with published versio
Chemistry in isolation: High CCH/HCO+ line ratio in the AMIGA galaxy CIG 638
Multi-molecule observations towards an increasing variety of galaxies have
been showing that the relative molecular abundances are affected by the type of
activity. However, these studies are biased towards bright active galaxies,
which are typically in interaction. We study the molecular composition of one
of the most isolated galaxies in the local Universe where the physical and
chemical properties of their molecular clouds have been determined by intrinsic
mechanisms. We present 3 mm broad band observations of the galaxy CIG 638,
extracted from the AMIGA sample of isolated galaxies. The emission of the J=1-0
transitions of CCH, HCN, HCO+, and HNC are detected. Integrated intensity
ratios between these line are compared with similar observations from the
literature towards active galaxies including starburst galaxies (SB), active
galactic nuclei (AGN), luminous infrared galaxies (LIRG), and GMCs in M33. A
significantly high ratio of CCH with respect to HCN, HCO+, and HNC is found
towards CIG 638 when compared with all other galaxies where these species have
been detected. This points to either an overabundance of CCH or to a relative
lack of dense molecular gas as supported by the low HCN/CO ratio, or both. The
data suggest that the CIG 638 is naturally a less perturbed galaxy where a
lower fraction of dense molecular gas, as well as a more even distribution
could explain the measured ratios. In this scenario the dense gas tracers would
be naturally dimmer, while the UV enhanced CCH, would be overproduced in a less
shielded medium.Comment: Letter accepted for publication in A&
Effects of non-adiabaticity on the voltage generated by a moving domain wall
We determine the voltage generated by a field-driven domain wall, taking into
account non-adiabatic corrections to the motive force induced by the
time-dependent spin Berry phase. Both the diffusive and ballistic transport
regimes are considered. We find that that the non-adiabatic corrections,
together with the contributions due to spin relaxation, determine the voltage
for driving fields smaller than the Walker breakdown limit.Comment: 8 pages, 3 figure
Influence of magnetic viscosity on domain wall dynamics under spin-polarized currents
We present a theoretical study of the influence of magnetic viscosity on
current-driven domain wall dynamics. In particular we examine how domain wall
depinning transitions, driven by thermal activation, are influenced by the
adiabatic and nonadiabatic spin-torques. We find the Arrhenius law that
describes the transition rate for activation over a single energy barrier
remains applicable under currents but with a current-dependent barrier height.
We show that the effective energy barrier is dominated by a linear current
dependence under usual experimental conditions, with a variation that depends
only on the nonadiabatic spin torque coefficient beta.Comment: 8 pages, 4 figure
Microscopic Calculation of Spin Torques in Disordered Ferromagnets
Effects of conduction electrons on magnetization dynamics, represented by
spin torques, are calculated microscopically in the first order in spatial
gradient and time derivative of magnetization. Special attention is paid to the
so-called -term and the Gilbert damping, , in the presence of
electrons' spin-relaxation processes, which are modeled by quenched magnetic
(and spin-orbit) impurities. The obtained results such as
hold for localized as well as itinerant ferromagnetism.Comment: 4 page
- …