61 research outputs found

    A Triple-Mode Performance-Optimized Reconfigurable Incremental ADC for Smart Sensor Applications

    Get PDF
    This paper proposes a triple-mode discrete-time incremental analog-to-digital converter (IADC) employing successive approximation register (SAR)-based zooming and extended counting (EC) schemes to achieve programmable trade-off capability of resolution and power consumption in various smart sensor applications. It mainly consists of an incremental delta???sigma modulator and the proposed SAR-EC sub-ADC for alternate operation of the coarse SAR conversion and EC. They can be reconfigured to operate separately depending on the application requirements. The SAR-based zooming structure allows the IADC to have better linearity and resolution, and additional activation of the EC function gives the further resolution. During this reconfigurable conversion process, pipelined reusing operation of sub-blocks reduces the silicon area and the number of cycles for target resolutions. A prototype ADC is fabricated in a 180-nm CMOS process, and its triple-mode operation of high-resolution, medium-resolution, and low-power is experimentally verified to achieve 116.1-, 109.4-, and 73.3-dB dynamic ranges, consuming 1.60, 1.26, and 0.39 mW, respectively

    Press'Em: Simulating Varying Button Tactility via FDVV Models

    Full text link
    Push-buttons provide rich haptic feedback during a press via mechanical structures. While different buttons have varying haptic qualities, few works have attempted to dynamically render such tactility, which limits designers from freely exploring buttons' haptic design. We extend the typical force-displacement (FD) model with vibration (V) and velocity-dependence characteristics (V) to form a novel FDVV model. We then introduce Press'Em, a 3D-printed prototype capable of simulating button tactility based on FDVV models. To drive Press'Em, an end-to-end simulation pipeline is presented that covers (1) capturing any physical buttons, (2) controlling the actuation signals, and (3) simulating the tactility. Our system can go beyond replicating existing buttons to enable designers to emulate and test non-existent ones with desired haptic properties. Press'Em aims to be a tool for future research to better understand and iterate over button designs.Comment: 4 pages, CHI'20 EA. arXiv admin note: text overlap with arXiv:2001.0435

    CT-Guided Percutaneous Vertebroplasty in the Treatment of an Upper Thoracic Compression Fracture

    Get PDF
    Percutaneous vertebroplasty (PVP) has been used to relieve pain and to prevent further collapse of the vertebral body in patients with an osteoporotic compression fracture. The most commonly affected site for the use of PVP is the thoracolumbar junction. There are few reports that have described on the usefulness of PVP in the treatment of a high thoracic compression fracture. We report a case of an upper thoracic compression fracture that was treated with computed tomography (CT)-guided PVP. It was possible to obtain easy access to the narrow thoracic pedicle and it was also possible to monitor continuously the proper volume of polymethylmethacrylate employed, under CT guidance

    A Three-Step Resolution-Reconfigurable Hazardous Multi-Gas Sensor Interface for Wireless Air-Quality Monitoring Applications

    Get PDF
    This paper presents a resolution-reconfigurable wide-range resistive sensor readout interface for wireless multi-gas monitoring applications that displays results on a smartphone. Three types of sensing resolutions were selected to minimize processing power consumption, and a dual-mode front-end structure was proposed to support the detection of a variety of hazardous gases with wide range of characteristic resistance. The readout integrated circuit (ROIC) was fabricated in a 0.18 ??m CMOS process to provide three reconfigurable data conversions that correspond to a low-power resistance-to-digital converter (RDC), a 12-bit successive approximation register (SAR) analog-to-digital converter (ADC), and a 16-bit delta-sigma modulator. For functional feasibility, a wireless sensor system prototype that included in-house microelectromechanical (MEMS) sensing devices and commercial device products was manufactured and experimentally verified to detect a variety of hazardous gases

    A Four-Step Incremental ADC Based on High-Coefficient Integrator and Binary Extended Counting With Capacitive DAC

    No full text
    This brief proposes a discrete-time four-step reconfigurable incremental ADC (IADC) which consists of a firststep SAR conversion, a second-step IADC operation, and double extended binary counting (EBC). While coarse conversion with the 8b SAR ADC is preceded, instead of 8b DAC, 7b capacitive DAC based integrator operation in the IADC becomes available to reduce the chip area and power consumption of amplifier. Additional resolution is achieved by performing the EBC twice, where its conversion time is reduced by using the binary operation with a 7b capacitive DAC. The IADC and the EBC are reconfigured to utilize the same sub-blocks of one amplifier and one comparator, thus reducing silicon area and obtaining high linearity. A prototype ADC is fabricated in a 180-nm CMOS process, and it achieves 179.7 dB FoM and consumes 176 ??W

    Impact Activation Improves Rapid Button Pressing

    No full text
    | openaire: EC/H2020/637991/EU//COMPUTEDThe activation point of a button is defined as the depth at which it invokes a make signal. Regular buttons are activated during the downward stroke, which occurs within the first 20 ms of a press. The remaining portion, which can be as long as 80 ms, has not been examined for button activation for reason of mechanical limitations. The paper presents a technique and empirical evidence for an activation technique called Impact Activation, where the button is activated at its maximal impact point. We argue that this technique is advantageous particularly in rapid, repetitive button pressing, which is common in gaming and music applications. We report on a study of rapid button pressing, wherein users’ timing accuracy improved significantly with use of Impact Activation. The technique can be implemented for modern push-buttons and capacitive sensors that generate a continuous signal.Peer reviewe

    Time-Resolved Photodissociations of Iodotoluene Radical Cations †

    No full text

    Study of Through Glass Via (TGV) Using Bessel Beam, Ultrashort Two-Pulses of Laser and Selective Chemical Etching

    No full text
    Selective laser etching is a promising candidate for the mass production of glass interposers. It comprises two steps: local modification by an ultrashort-pulsed laser and chemical etching of the modified volume. According to previous studies, when an ultrashort-pulsed laser beam is irradiated on the sample, electron excitation occurs, followed by phonon vibration. In general, the electron excitation occurs for less than a few tens of picoseconds and phonon vibration occurs for more than 100 picoseconds. Thus, in order to compare the electric absorption and thermal absorption of photons in the commercial glass, we attempt to implement an additional laser pulse of 213 ps and 10 ns after the first pulse. The modified glass sample is etched with 8 mol/L KOH solution with 110 °C to verify the effect. Here, we found that the electric absorption of photons is more effective than the thermal absorption of them. We can claim that this result helps to enhance the process speed of TGV generation

    Quantifying Proactive and Reactive Button Input

    No full text
    corecore