4 research outputs found

    Multiphasic analysis of whole exome sequencing data identifies a novel mutation of ACTG1 in a nonsyndromic hearing loss family

    Get PDF
    BACKGROUND: The genetic heterogeneity of sensorineural hearing loss is a major hurdle to the efficient discovery of disease-causing genes. We designed a multiphasic analysis of copy number variation (CNV), linkage, and single nucleotide variation (SNV) of whole exome sequencing (WES) data for the efficient discovery of mutations causing nonsyndromic hearing loss (NSHL). RESULTS: From WES data, we identified five distinct CNV loci from a NSHL family, but they were not co-segregated among patients. Linkage analysis based on SNVs identified six candidate loci (logarithm of odds [LOD] >1.5). We selected 15 SNVs that co-segregated with NSHL in the family, which were located in six linkage candidate loci. Finally, the novel variant p.M305T in ACTG1 (DFNA20/26) was selected as a disease-causing variant. CONCLUSIONS: Here, we present a multiphasic CNV, linkage, and SNV analysis of WES data for the identification of a candidate mutation causing NSHL. Our stepwise, multiphasic approach enabled us to expedite the discovery of disease-causing variants from a large number of patient variants

    Melatonin Regulates Iron Homeostasis by Inducing Hepcidin Expression in Hepatocytes

    No full text
    The pineal hormone, melatonin, plays important roles in circadian rhythms and energy metabolism. The hepatic peptide hormone, hepcidin, regulates iron homeostasis by triggering the degradation of ferroportin (FPN), the protein that transfers cellular iron to the blood. However, the role of melatonin in the transcriptional regulation of hepcidin is largely unknown. Here, we showed that melatonin upregulates hepcidin gene expression by enhancing the melatonin receptor 1 (MT1)-mediated c-Jun N-terminal kinase (JNK) activation in hepatocytes. Interestingly, hepcidin gene expression was increased during the dark cycle in the liver of mice, whereas serum iron levels decreased following hepcidin expression. In addition, melatonin significantly induced hepcidin gene expression and secretion, as well as the subsequent FPN degradation in hepatocytes, which resulted in cellular iron accumulation. Melatonin-induced hepcidin expression was significantly decreased by the melatonin receptor antagonist, luzindole, and by the knockdown of MT1. Moreover, melatonin activated JNK signaling and upregulated hepcidin expression, both of which were significantly decreased by SP600125, a specific JNK inhibitor. Chromatin immunoprecipitation analysis showed that luzindole significantly blocked melatonin-induced c-Jun binding to the hepcidin promoter. Finally, melatonin induced hepcidin expression and secretion by activating the JNK-c-Jun pathway in mice, which were reversed by the luzindole treatment. These findings reveal a previously unrecognized role of melatonin in the circadian regulation of hepcidin expression and iron homeostasis

    Melatonin Regulates Iron Homeostasis by Inducing Hepcidin Expression in Hepatocytes

    No full text
    The pineal hormone, melatonin, plays important roles in circadian rhythms and energy metabolism. The hepatic peptide hormone, hepcidin, regulates iron homeostasis by triggering the degradation of ferroportin (FPN), the protein that transfers cellular iron to the blood. However, the role of melatonin in the transcriptional regulation of hepcidin is largely unknown. Here, we showed that melatonin upregulates hepcidin gene expression by enhancing the melatonin receptor 1 (MT1)-mediated c-Jun N-terminal kinase (JNK) activation in hepatocytes. Interestingly, hepcidin gene expression was increased during the dark cycle in the liver of mice, whereas serum iron levels decreased following hepcidin expression. In addition, melatonin significantly induced hepcidin gene expression and secretion, as well as the subsequent FPN degradation in hepatocytes, which resulted in cellular iron accumulation. Melatonin-induced hepcidin expression was significantly decreased by the melatonin receptor antagonist, luzindole, and by the knockdown of MT1. Moreover, melatonin activated JNK signaling and upregulated hepcidin expression, both of which were significantly decreased by SP600125, a specific JNK inhibitor. Chromatin immunoprecipitation analysis showed that luzindole significantly blocked melatonin-induced c-Jun binding to the hepcidin promoter. Finally, melatonin induced hepcidin expression and secretion by activating the JNK-c-Jun pathway in mice, which were reversed by the luzindole treatment. These findings reveal a previously unrecognized role of melatonin in the circadian regulation of hepcidin expression and iron homeostasis

    Orphan Nuclear Receptor ERRĪ³ Is a Transcriptional Regulator of CB1 Receptor-Mediated TFR2 Gene Expression in Hepatocytes

    No full text
    Orphan nuclear receptor estrogen-related receptor Ī³ (ERRĪ³) is an important transcription factor modulating gene transcription involved in endocrine control of liver metabolism. Transferrin receptor 2 (TFR2), a carrier protein for transferrin, is involved in hepatic iron overload in alcoholic liver disease (ALD). However, TFR2 gene transcriptional regulation in hepatocytes remains largely unknown. In this study, we described a detailed molecular mechanism of hepatic TFR2 gene expression involving ERRĪ³ in response to an endocannabinoid 2-arachidonoylglycerol (2-AG). Treatment with 2-AG and arachidonyl-2ā€²-chloroethylamide, a selective cannabinoid receptor type 1 (CB1) receptor agonist, increased ERRĪ³ and TFR2 expression in hepatocytes. Overexpression of ERRĪ³ was sufficient to induce TFR2 expression in both human and mouse hepatocytes. In addition, ERRĪ³ knockdown significantly decreased 2-AG or alcohol-mediated TFR2 gene expression in cultured hepatocytes and mouse livers. Finally, deletion and mutation analysis of the TFR2 gene promoter demonstrated that ERRĪ³ directly modulated TFR2 gene transcription via binding to an ERR-response element. This was further confirmed by chromatin immunoprecipitation assay. Taken together, these results reveal a previously unrecognized role of ERRĪ³ in the transcriptional regulation of TFR2 gene expression in response to alcohol
    corecore