5 research outputs found

    Photometric Selection of Unobscured QSOs in the Ecliptic Poles: KMTNet in the South Field and Pan-STARRS in the North Field

    Full text link
    We search for quasi-stellar objects (QSOs) in a wide area of the south ecliptic pole (SEP) field, which has been and will continue to be intensively explored through various space missions. For this purpose, we obtain deep broadband optical images of the SEP field covering an area of \sim14.5×14.514.5\times14.5 deg2^2 with the Korea Microlensing Telescope Network. The 5σ\sigma detection limits for point sources in the BVRIBVRI bands are estimated to be \sim22.59, 22.60, 22.98, and 21.85 mag, respectively. Utilizing data from Wide-field Infrared Survey Explorer, unobscured QSO candidates are selected among the optically point-like sources using the mid-infrared (MIR) and optical-MIR colors. To further refine our selection and eliminate any contamination not adequately removed by the color-based selection, we perform the spectral energy distribution fitting with archival photometric data ranging from optical to MIR. As a result, we identify a total of 2,383 unobscured QSO candidates in the SEP field. We also apply a similar method to the north ecliptic pole field using the Pan-STARRS data and obtain a similar result of identifying 2,427 candidates. The differential number count per area of our QSO candidates is in good agreement with those measured from spectroscopically confirmed ones in other fields. Finally, we compare the results with the literature and discuss how this work will be implicated in future studies, especially with the upcoming space missions.Comment: 14 pages, 9 figures, accepted for publication in ApJ

    Photometric Selection of Unobscured QSOs at the Ecliptic Poles: KMTNet in the South Field and Pan-STARRS in the North Field

    No full text
    We search for quasi-stellar objects (QSOs) in a wide area of the south ecliptic pole (SEP) field, which has been and will continue to be intensively explored through various space missions. For this purpose, we obtain deep broadband optical images of the SEP field covering an area of ∼14.5 × 14.5 deg ^2 with the Korea Microlensing Telescope Network (KMTNet). The 5 σ detection limits for point sources in the BVRI bands are estimated to be ∼22.59, 22.60, 22.98, and 21.85 mag, respectively. Utilizing data from the Wide-field Infrared Survey Explorer, unobscured QSO candidates are selected among the optically pointlike sources using mid-infrared (MIR) and optical–MIR colors. To refine our selection further and eliminate any contamination not adequately removed by the color-based selection, we perform spectral energy distribution fitting with archival photometric data ranging from optical to MIR. As a result, we identify a total of 2383 unobscured QSO candidates in the SEP field. We also apply a similar method to the north ecliptic pole field using Pan-STARRS data and obtain a similar result of identifying 2427 candidates. The differential number count per area of our QSO candidates is in good agreement with those measured from spectroscopically confirmed ones in other fields. Finally, we compare the results with the literature and discuss how this work will impact future studies, especially upcoming space missions
    corecore