65 research outputs found

    Application of the ESRI Geostatistical Analyst for Determining the Adequacy and Sample Size Requirements of Ozone Distribution Models in the Carpathian and Sierra Nevada Mountains

    Get PDF
    Models of O3 distribution in two mountain ranges, the Carpathians in Central Europe and the Sierra Nevada in California were constructed using ArcGIS Geostatistical Analyst extension (ESRI, Redlands, CA) using kriging and cokriging methods. The adequacy of the spatially interpolated ozone (O3) concentrations and sample size requirements for ozone passive samplers was also examined. In case of the Carpathian Mountains, only a general surface of O3 distribution could be obtained, partially due to a weak correlation between O3 concentration and elevation, and partially due to small numbers of unevenly distributed sample sites. In the Sierra Nevada Mountains, the O3 monitoring network was much denser and more evenly distributed, and additional climatologic information was available. As a result the estimated surfaces were more precise and reliable than those created for the Carpathians. The final maps of O3 concentrations for Sierra Nevada were derived from cokriging algorithm based on two secondary variables — elevation and maximum temperature as well as the determined geographic trend. Evenly distributed and sufficient numbers of sample points are a key factor for model accuracy and reliability

    Ozone and plants

    Get PDF
    The International Conference on Ozone and Plants was held on May 18-21, 2014, in Beijing, China, hosted by the Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (http://english.rcees.cas.cn/), on behalf of the IUFRO Research Group 7.01.00 “Impacts of Air Pollution and Climate Change on Forest Ecosystems” (http://www.iufro.org/science/divisions/ division-7/70000/70100) and the ICP Vegetation (http:// icpvegetation.ceh.ac.uk). A special session was organised by the Task Force on Hemispheric Transport of Air Pollution (http://htap.org) of the UNECE Long-range Transboundary Air Pollution Convention (http://www.unece.org/env/lrtap). The conference gathered more than 110 scientists from 17 countries to share the state of the art of ozone research and discuss scientific gaps in the understanding of the interaction between ozone and plants. The 2nd International Conference on Ozone and Plants is scheduled for 2017

    Air pollution impacts on forests in a changing climate

    Get PDF
    Growing awareness of air pollution effects on forests has, from the early 1980s on, led to intensive forest damage research and monitoring. This has fostered air pollution control, especially in Europe and North America, and to a smaller extent also in other parts of the world. At several forest sites in these regions, there are first indications of a recovery of forest soil and tree conditions that may be attributed to improved air quality. This caused a decrease in the attention paid by politicians and the public to air pollution effects on forests. But air pollution continues to affect the structure and functioning of forest ecosystems not only in Europe and North America but even more so in parts of Russia, Asia, Latin America, and Africa. At the political level, however, attention to climate change is focussed on questions of CO2 emission and carbon sequestration. But ecological interactions between air pollution including CO2 and O3 concentrations, extreme temperatures, drought, fire, insects, pathogens, and fire, as well as the impact of ecosystem management practices, are still poorly understood. Future research should focus on the interacting impacts on forest trees and ecosystems. The integrative effects of air pollution and climatic change, in particular elevated O3, altered nutrient, temperature, water availability, and elevated CO2, will be key issues for impact research. An important improvement in our understanding might be obtained by the combination of long-term multidisciplinary experiments with ecosystem-level monitoring, and the integration of the results with ecosystem modelling within a multiple-constraint framework

    Development of a Statistical Model for Estimating Spatial and Temporal Ambient Ozone Patterns in the Sierra Nevada, California

    Get PDF
    Statistical approaches for modeling spatially and temporally explicit data are discussed for 79 passive sampler sites and 9 active monitors distributed across the Sierra Nevada, California. A generalized additive regression model was used to estimate spatial patterns and relationships between predicted ozone exposure and explanatory variables, and to predict exposure at nonmonitored sites. The fitted model was also used to estimate probability maps for season average ozone levels exceeding critical (or subcritical) levels in the Sierra Nevada region. The explanatory variables — elevation, maximum daily temperature, and precipitation and ozone level at closest active monitor — were significant in the model. There was also a significant mostly east-west spatial trend. The between-site variability had the same magnitude as the error variability. This seems to indicate that there still exist important site features not captured by the variables used in the analysis and that may improve the accuracy of the predictive model in future studies. The fitted model using robust techniques had an overall R2 value of 0.58. The mean standard deviation for a predicted value was 6.68 ppb

    On-road emissions of ammonia: An underappreciated source of atmospheric nitrogen deposition

    Get PDF
    We provide updated spatial distribution and inventory data for on-road NH3 emissions for the continental United States (U.S.) On-road NH3 emissions were determined from on-road CO2 emissions data and empirical NH3:CO2 vehicle emissions ratios. Emissions of NH3 from on-road sources in urbanized regions are typically 0.1– 1.3 t km−2 yr−1 while NH3 emissions in agricultural regions generally range from 0.4–5.5 t km−2 yr−1, with a few hot spots as high as 5.5–11.2 t km−2 yr−1. Counties with higher vehicle NH3 emissions than from agriculture include 40% of the U.S. population. The amount of wet inorganic N deposition as NH4+ from the National Atmospheric Deposition Program (NADP) network ranged from 37 to 83% with a mean of 58.7%. Only 4% of the NADP sites across the U.S. had \u3c45% of the N deposition as NH4+ based on data from 2014 to 2016, illustrating the near-universal elevated proportions of NH4+ in deposition across the U.S. Case studies of on-road NH3 emissions in relation to N deposition include four urban sites in Oregon and Washington where the average NH4- N:NO3-N ratio in bulk deposition was 2.3. At urban sites in the greater Los Angeles Basin, bulk deposition of NH4-N and NO3-N were equivalent, while NH4-N:NO3-N in throughfall under shrubs ranged from 0.6 to 1.7. The NH4-N:NO3-N ratio at 7–10 sites in the Lake Tahoe Basin averaged 1.4 and 1.6 in bulk deposition and throughfall, and deposition of NH4-N was strongly correlated with summertime NH3 concentrations. On-road emissions of NH3 should not be ignored as an important source of atmospheric NH3, as a major contributor to particulate air pollution, and as a driver of N deposition in urban and urban-affected regions

    Impacts of Air Pollution and Climate Change on Forest Ecosystems — Emerging Research Needs

    Get PDF
    Outcomes from the 22nd meeting for Specialists in Air Pollution Effects on Forest Ecosystems “Forests under Anthropogenic Pressure Effects of Air Pollution, Climate Change and Urban Development”, September 1016, 2006, Riverside, CA, are summarized. Tropospheric or ground-level ozone (O3) is still the phytotoxic air pollutant of major interest. Challenging issues are how to make O3 standards or critical levels more biologically based and at the same time practical for wide use; quantification of plant detoxification processes in flux modeling; inclusion of multiple environmental stresses in critical load determinations; new concept development for nitrogen saturation; interactions between air pollution, climate, and forest pests; effects of forest fire on air quality; the capacity of forests to sequester carbon under changing climatic conditions and coexposure to elevated levels of air pollutants; enhanced linkage between molecular biology, biochemistry, physiology, and morphological traits

    Surface ozone in the White Mountains of California

    No full text
    Surface ozone concentrations are presented for four high-elevation sites along a north–south transect along the spine of the White Mountains and a fifth site located at lower elevation approximately 15 km to the west on the floor of the Owens Valley. The ozone data, which were collected from mid-June through mid-October of 2009, include results from two sites, White Mountain Summit (4342 m elevation) and Barcroft Station (3783 m), that are believed to be higher in elevation than any previously investigated sampling locations in North America. Average daily ozone values from the five sampling sites display similar day-to-day and week-to-week temporal fluctuations, which suggest that the sites are experiencing the same regional-scale background patterns in air quality and meteorology. Ozone concentrations increase with increasing elevation, consistent with findings from prior studies in Europe and North America. A linear elevation gradient of +0.0042 ppb m−1 is obtained for July 15–August 15, but analogous gradients for August 15–September 15 and September 15–October 15 show reduced linearity and possibly the onset of a plateau in ozone concentrations for elevations above 2000 m. Average diurnal cycle magnitudes decrease with increasing elevation, falling from ∼25–35 ppb for the Owens Valley site to ∼3–7 ppb at three of the four high-elevation sites. Diurnal cycle magnitudes decrease (or remain roughly constant) at the non-Summit sites during the progression from mid-July to mid-October, but the magnitude of the diurnal cycle at the Summit increases from ∼3 ppb to ∼7 ppb over this same time frame. This latter result is inconsistent with results from previous investigations at other alpine sites, and may indicate the presence of local, topography-influenced mixing dynamics that are unique to the White Mountains. High hourly ozone concentrations at White Mountain Summit are found to correlate with 72-hour HYSPLIT back-trajectories that reflect enhanced levels of ozone transport from polluted regions (such as the Central Valley of California) or meteorological conditions that are favorable for ozone production. Low ozone concentrations at the Summit are found to correlate with HYSPLIT back-trajectories that reflect reduced levels of ozone transport from polluted areas or meteorological conditions that are unfavorable for ozone production

    Vertical Distribution of Ozone and Nitrogenous Pollutants in an Air Quality Class I Area, the San Gorgonio Wilderness, Southern California

    Get PDF
    Information about spatial and temporal distribution of air pollutants is essential for better understanding of environmental stresses affecting forests and estimation of potential risks associated with air pollutants. Ozone and nitrogenous air pollutants were monitored along an elevation gradient in the Class I San Gorgonio Wilderness area (San Bernardino Mountains, California, U.S.) during the summer of 2000 (mid-June to mid-October). Passive samplers were exposed for 2-week periods at six sampling sites located at 300 m intervals ranging from 1200 to 2700 m elevation. Elevated concentrations of ozone were found in this area with summer 24-h hourly means ranging from 53 to 59 ppb. The highest ozone concentrations were detected in the period July 25 to August 8, reaching values of 64 to 72 ppb expressed as 2-week mean. Passive-sampler ozone data did not show a clear relationship with elevation, although during the periods with higher ozone levels, ozone concentrations were higher at those sites below 2000 m than at sites located above that elevation. All nitrogenous pollutants studied showed a consistent decrease of concentrations with elevation. Nitrogen dioxide (NO2) levels were low, decreasing with increasing elevation from 6.4 to 1.5 ppb summer means. Nitric oxide (NO) concentrations were around 1 to 2 ppb, which is within the range of the detection levels of the devices used. Nitric acid (HNO3) vapor concentrations were lower at higher elevations (summer means 1.9 to 2.5 μg m-3) than at lower elevations (summer means 4.3 to 5.1 μg m-3). Summer concentrations of ammonia (NH3) were slightly higher than nitric acid ranging from 6 μg m-3 at the lowest site to 2.5 μg m-3 registered at the highest elevation. Since complex interactions between ozone and nitrogenous air pollutants have already been described for forests, simultaneous information about the distribution of these pollutants is needed. This is particularly important in mountain terrain where no reliable models of air pollutant distribution exist
    corecore