435 research outputs found
Effect of the surface temperature on surface morphology, deuterium retention and erosion of EUROFER steel exposed to low-energy, high-flux deuterium plasma
Samples of EUFROFER, a reduced activation ferritic martensitic steel, were exposed in the linear plasma device Pilot-PSI to a deuterium (D) plasma with incident ion energy of similar to 40 eV and incident D flux of 2-6 x10(23) D/m(2) s to fluences up to 10 27 D/m(2) at surface temperatures ranging from 400 K to 950 K. The main focus of the study lays on the surface morphology changes dependent on the surface temperature and the surface composition evolution, e.g., the enrichment in tungsten; but also the erosion and the D retention are studied. The created surface morphology varies strongly with surface temperature from needle-like to corral-like structures. The visible lateral length scale of the formed structures is in the range of tens of nanometres to above 1 mu m and exhibits two thermal activated regimes below and above similar to 770 K with activation energies of 0.2 eV and 1.3 eV, respectively. The lateral variation of the enrichment of heavy elements on the surface is correlated to this surface morphology at least in the high temperature regime, independent of the origin of the enrichment (intrinsic from the sample or deposited by the plasma). Also the erosion exhibits temperature dependence at least above similar to 770 K as well as a fluence dependence. The amount of deuterium retained in the top 500 nm is almost independent of the exposure temperature and is of the order of 10(18) D/m(2), which would correspond to a sub-monolayer D coverage on the surface. The retained D in the volume summing up over the complete samples exceeds the D retained close to the surface by one order of magnitude. (C) 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
Microborings in mid Cretaceous fish teeth
Fish teeth and other remains from the British Cretaceous contain abundant evidence for post-mortem colonization by endolithic organisms. The borings are here recognised as occurring in three morphotypes, including a flask-shaped form not previously recorded. There is strong evidence to suggest that each of these boring types shows a strong preference for a particular substrate histology. The damage and destruction of vertebrate remains by microborings is here considered to exert a major taphonomic control on microvertebrate assemblages. The relationships between the intensity of colonization of vertebrate material by endolithic organisms and palaeoenvironment have implications for using these bone microborings as palaeoenvironmental indicators
Dust remobilization in fusion plasmas under steady state conditions
The first combined experimental and theoretical studies of dust
remobilization by plasma forces are reported. The main theoretical aspects of
remobilization in fusion devices under steady state conditions are analyzed. In
particular, the dominant role of adhesive forces is highlighted and generic
remobilization conditions - direct lift-up, sliding, rolling - are formulated.
A novel experimental technique is proposed, based on controlled adhesion of
dust grains on tungsten samples combined with detailed mapping of the dust
deposition profile prior and post plasma exposure. Proof-of-principle
experiments in the TEXTOR tokamak and the EXTRAP-T2R reversed-field pinch are
presented. The versatile environment of the linear device Pilot-PSI allowed for
experiments with different magnetic field topologies and varying plasma
conditions that were complemented with camera observations.Comment: 16 pages, 11 figures, 3 table
Chiral peculiar properties of self-organization of diphenylalanine peptide nanotubes: Modeling of structure and properties
The structure and properties of diphenylalanine peptide nanotubes based on phenylalanine were investigated by various molecular modeling methods. The main approaches were semi-empirical quantum-chemical methods (PM3 and AM1), and molecular mechanical ones. Both the model structures and the structures extracted from their experimental crystallographic databases obtained by X-ray methods were examined. A comparison of optimized model structures and structures obtained by naturally-occurring self-assembly showed their important differences depending on D- and L-chirality. In both the cases, the effect of chirality on the results of self-assembly of diphenylalanine peptide nanotubes was established: peptide nanotubes based on the D-diphenylalanine (D-FF) has high condensation energy E 0 in transverse direction and forms thicker and shorter peptide nanotubes bundles, than that based on L-diphenylalanine (L-FF). A topological difference was established: model peptide nanotubes were optimized into structures consisting of rings, while naturally self-assembled peptide nanotubes consisted of helical coils. The latter were different for the original L-FF and D-FF. They formed helix structures in which the chirality sign changes as the level of the macromolecule hierarchy raises. Total energy of the optimal distances between two units are deeper for L-FF (-1.014 eV) then for D-FF (-0.607 eV) for ring models, while for helix coil are approximately the same and have for L-FF (-6.18 eV) and for D-FF (-6.22 eV) by PM3 method; for molecular mechanical methods energy changes are of the order of 2-3 eV for both the cases. A topological transition between a ring and a helix coil of peptide nanotube structures is discussed: self-assembled natural helix structures are more stable and favourable, they have lower energy in optimal configuration as compared with ring models by a value of the order of 1 eV for molecular mechanical methods and 5 eV for PM3 method. © 2019 Mathematical Biology and Bioinformatics.Part of this work was developed as part of the CICECO-Aveiro Materials Institute project, POCI-01-0145-FEDER-007679 funded from Fundação para a Ciência e a Tecnologia (FCT) Ref. UID/CTM/50011/2013, and funded from national funds through FCT/MEC, and co-funded by FEDER in accordance with the PT2020 Partnership Agreement. P.Z. thanks the project FCT PTDC/QEQ-QAN/6373/2014. S.K. thanks the project FCT PTDC/CTM-CTM/31679/2017
NMR solution conformation of gramicidin A double helix
AbstractThe conformation of species 3 of Val-gramicidin A in dioxane has been determined by two-dimensional NMR spectroscopy. It is presented by the left handed ⇅ππ5.6LD double helix, a suitable model of an ion permeable pore across the membrane matrix
Star-calibrated lunar photography by method of separate plates for a determination of the coordinates of lunar control points
A photographic determination of the absolute coordinates of lunar features against the stellar background by the method of separated plates is proposed. The description of the technique and the equation for the plates reduction is given. The determination of the stars positions by new technique is given in the description of the method. © 1974 D. Reidel Publishing Company
- …