8 research outputs found
The Hamiltonian limit of (3+1)D SU(3) lattice gauge theory on anisotropic lattices
The extreme anisotropic limit of Euclidean SU(3) lattice gauge theory is
examined to extract the Hamiltonian limit, using standard path integral Monte
Carlo (PIMC) methods. We examine the mean plaquette and string tension and
compare them to results obtained within the Hamiltonian framework of Kogut and
Susskind. The results are a significant improvement upon previous Hamiltonian
estimates, despite the extrapolation procedure necessary to extract
observables. We conclude that the PIMC method is a reliable method of obtaining
results for the Hamiltonian version of the theory. Our results also clearly
demonstrate the universality between the Hamiltonian and Euclidean formulations
of lattice gauge theory. It is particularly important to take into account the
renormalization of both the anisotropy, and the Euclidean coupling ,
in obtaining these results.Comment: 10 pages, 11 figure
A meta-analysis of Hodgkin lymphoma reveals 19p13.3 <i>TCF3</i> as a novel susceptibility locus
Recent genome-wide association studies (GWAS) of Hodgkin lymphoma (HL) have identified associations with genetic variation at both HLA and non-HLA loci; however, much of heritable HL susceptibility remains unexplained. Here we perform a meta-analysis of three HL GWAS totaling 1,816 cases and 7,877 controls followed by replication in an independent set of 1,281 cases and 3,218 controls to find novel risk loci. We identify a novel variant at 19p13.3 associated with HL (rs1860661; odds ratio (OR)=0.81, 95% confidence interval (95% CI)=0.76–0.86, <i>P</i><sub>combined</sub>=3.5 × 10<sup>−10</sup>), located in intron 2 of <i>TCF3</i> (also known as <i>E2A</i>), a regulator of B- and T-cell lineage commitment known to be involved in HL pathogenesis. This meta-analysis also notes associations between previously published loci at 2p16, 5q31, 6p31, 8q24 and 10p14 and HL subtypes. We conclude that our data suggest a link between the 19p13.3 locus, including <i>TCF3</i>, and HL risk