277 research outputs found

    Numerically Modelling Time and Dose Dependent Cytotoxicity

    Get PDF
    Dose-response curves are fundamental tools of in vitro toxicology, extensively employed in toxicant or drug screening. They are expressed by a variety of end-points and assays, measured at different time-points in a choice of cell-lines, but are typically quantified only using the mean concentration for 50% response (e.g. drug efficacy or pathway inhibition) as an indicator of overall effect. However, the response is the result of a complex and dynamic cascade of events which occur between the initial exposure and the measured end-point, and the characteristic rates of the contributing stages govern the dose response and ultimately the measured characteristic concentration. A better understanding of the effects and interdependencies of these can help in interpreting the response curves. The system can be modelled according to a phenomenological rate equation approach, in which each stage of the process is characterised by a rate constant, and causal relationships between different processes are incorporated. The current study utilises such an approach to simulate some common response cascades of cell populations to exogenous agents and explores the dependences of the dose dependent response on, for example, number of steps in a cascade, time-point, and scenarios such as additive, synergistic and antagonistic response of multiple exogenous agents

    Vibrational Spectroscopy as a Tool for Studying Drug-Cell Interaction: Could High Throughput Vibrational Spectroscopic Screening Improve Drug Development

    Get PDF
    Vibrational spectroscopy is currently widely explored as a tool in biomedical applications. An area at the forefront of this field is the use of vibrational spectroscopy for disease diagnosis, ultimately aiming towards spectral pathology. However, while this field shows promising results, moving this technique into the clinic faces the challenges of widespread clinical trials and legislative approval. While spectral pathology has received a lot of attention, there are many other biomedical applications of vibrational spectroscopy, which could potentially be translated to applications with greater ease. A particularly promising application is the use of vibrational spectroscopic techniques to study the interaction of drugs with cells. Many studies have demonstrated the ability to detect biochemical changes in cells in response to drug application, using both infrared and Raman spectroscopy. This has shown potential for use in high throughput screening (HTS) applications, for screening of efficacy and mode of action of potential drug candidates, to speed up the drug discovery process. HTS is still a relatively new and growing area of research and, therefore, there is more potential for new techniques to move into and shape this field. Vibrational spectroscopic techniques come with many benefits over the techniques used currently in HTS, primarily based on fluorescence assays to detect specific binding interactions or phenotypes. They are label free, and an infrared or Raman spectrum provides a wealth of biochemical information, and therefore could reveal not only information about a specific interaction, but about how the overall biochemistry of a cell changes in response to application of a drug candidate. Therefore, drug mode of action could be elucidated. This review will investigate the potential for vibrational spectroscopy, particularly FTIR and Raman spectroscopy, to benefit the field of HTS and improve the drug development process. In addition to FTIR and Raman spectroscopy, surface enhanced Raman spectroscopy (SERS), coherent anti-Stokes Raman spectroscopy (CARS) and stimulated Raman spectroscopy (SRS), will be investigated as an alternative tool in the HTS process

    The Focas Institute at DIT : Origins and Development of a Research Institute

    Get PDF
    The book outlines the roots and development of a new scientific research institute called the Focas ( facility for Optical Characterisation and Spectroscopy) within the Dublin Institute of Technology

    Determination of Spectral Markers of Cytotoxicity and Genotoxicity Using in vitro Raman Microspectroscopy: Cellular Responses to Polyamidoamine Dendrimer Exposure

    Get PDF
    Although consumer exposure to nanomaterials is ever increasing, with potential increased applications in areas such as drug and/or gene delivery, contrast agents and diagnosis, determination of cyto- and geno- toxic effect of nanomaterials on human health and the environment still remains challenging. Although many techniques have been established and adapted to determine the cytotoxicity and genotoxicity of nano-sized materials, these techniques remain limited by the number of assays required, total cost, use of labels and they struggle to explain the underlying interaction mechanisms. In this study, Raman microspectroscopy is employed as an in vitro label free high content screening technique to observe toxicological changes within the cell in a multi-parametric fashion. The evolution of spectral markers as a function of time and applied dose has been used to elucidate the mechanism of action of polyamidoamine (PAMAM) dendrimers associated with cytotoxicity and their impact on nuclear biochemistry. PAMAM dendrimers are chosen as a model nanomaterial due to their widely studied cytotoxic and genotoxic properties and commercial availability. Point spectra were acquired from cytoplasm to monitor the cascade of toxic events occurring in the cytoplasm upon nanoparticle exposure, whereas the spectra acquired from nucleus and nucleolus were used to explore PAMAM-nuclear material interaction as well as genotoxic responses

    Toxicology of Engineered Nanoparticles: Focus on Poly(amidoamine) Dendrimers

    Get PDF
    Engineered nanomaterials are increasingly being developed for paints, sunscreens, cosmetics, industrial lubricants, tyres, semiconductor devices, and also for biomedical applications such as in diagnostics, therapeutics, and contrast agents. As a result, nanomaterials are being manufactured, transported, and used in larger and larger quantities, and potential impacts on environmental and human health have been raised. Poly(amidoamine) (PAMAM) dendrimers are specifically suitable for biomedical applications. They are well-defined nanoscale molecules which contain a 2-carbon ethylenediamine core and primary amine groups at the surface. The systematically variable structural architecture and the large internal free volume make these dendrimers an attractive option for drug delivery and other biomedical applications. Due to the wide range of applications, the Organisation for Economic Co-Operation and Development (OECD) have included them in their list of nanoparticles which require toxicological assessment. Thus, the toxicological impact of these PAMAM dendrimers on human health and the environment is a matter of concern. In this review, the potential toxicological impact of PAMAM dendrimers on human health and environment is assessed, highlighting work to date exploring the toxicological effects of PAMAM dendrimers

    Potential of Raman Spectroscopy For the Analysis of Plasma/serum in the Liquid State: Recent Advances

    Get PDF
    There is compelling evidence in the literature to support the application of Raman spectroscopy for analysis of bodily fluids in their native liquid state. Naturally, the strategies described in the literature for Raman spectroscopic analysis of liquid samples have advantages and disadvantages. Herein, recent advances in the analysis of plasma/serum in the liquid state are reviewed. The potential advantages of Raman analysis in the liquid form over the commonly employed infrared absorption analysis in the dried droplet form are initially highlighted. Improvements in measurement protocols based on inverted microscopic geometries, clinically adaptable substrates, data preprocessing and analysis, and applications for routine monitoring of patient health as well as therapeutic administration are reviewed. These advances suggest that clinical translation of Raman spectroscopy for rapid biochemical analysis can be a reality. In the future, this method will prove to be highly beneficial to clinicians for rapid screening and monitoring of analytes and drugs in the biological fluids, and to the patients themselves, enabling early treatment, before the disease becomes symptomatic, allowing early recovery

    Raman Spectroscopy Detects Biochemical Changes Due to Different Cell Culture Environments in Live Cells In Vitro

    Get PDF
    The in vitro cell culture environment can impact on cell biochemistry and cell cycle. The manifestation of such substrate-induced changes in cell cycle in the Raman microspectroscopic profiles of cell cultures is investigated at the level of nucleolus, nucleus and cytoplasm. HeLa immortalised human cervical cells and HaCaT dermal cells were cultured on three different substrates, conventional polystyrene cell culture dishes, CaF2 slides as a commonly used Raman substrate, and glass slides coated with collagen rat tail, as a mimic of the extra-cellular matrix (ECM) environment. A cell cycle study, based on percentage DNA content, as determined using propidium iodide staining and monitored by flow cytometry, was performed on cells of both types, grown on the different substrates, confirming that the in vitro cell culture environment impacts significantly on the cell cycle. Live cell in vitro Raman spectroscopic analysis of cells on the 2D CaF2 and 3D collagen substrates was performed and data was analysed using principal component analysis (PCA). The spectroscopic analysis revealed differences in profiles which reflect the differences in cell cycle for both in vitro culture environments. In particular, the Raman spectra of cells grown on CaF2 show indicators of cell stress, which are also associated with cell cycle arrest at the G0/G1 phase. This work contributes to the field of Raman spectroscopic analysis by providing a fresh look at the significance of the effect of in vitro culture environment to cell cycle and the sensitivity of Raman spectroscopy to such differences in cell metabolism

    Raman spectroscopy detects biochemical changes due to different cell culture environments in live cells in vitro

    Get PDF
    The in vitro cell culture environment can impact on cell biochemistry and cell cycle. The manifestation of such substrate-induced changes in cell cycle in the Raman microspectroscopic profiles of cell cultures is investigated at the level of nucleolus, nucleus and cytoplasm. HeLa immortalised human cervical cells and HaCaT dermal cells were cultured on three different substrates, conventional polystyrene cell culture dishes, CaF2 slides as a commonly used Raman substrate, and glass slides coated with Collagen Rat Tail, as a mimic of the extra cellular matrix (ECM) environment. A cell cycle study, based on percentage DNA content, as determined using Propidium Iodide staining and monitored by flow cytometry, was performed on cells of both types, grown on the different substrates, confirming that the in vitro cell culture environment impacts significantly on the cell cycle. Live cell in vitro Raman spectroscopic analysis of cells on the 2D CaF2 and 3D Collagen substrates was performed and data was analysed using principal components analysis (PCA). The spectroscopic analysis revealed differences in profiles which reflect the differences in cell cycle for both in vitro culture environments. In particular, the Raman spectra of cells 2 grown on CaF2 show indicators of cell stress, which are also associated with cell cycle arrest at the G0/G1 phase. This work contributes to the field of Raman spectroscopic analysis by providing a fresh look at the significance of the effect of in vitro culture environment to cell cycle and the sensitivity of Raman spectroscopy to such differences in cell metabolism

    Electric Field Standing Wave Effects in FT-IR Transflection Spectra of biological tissue sections: simulated models of experimental variability

    Get PDF
    The so-called electric field standing wave effect (EFSW) has recently been demonstrated to significantly distort FT-IR spectra acquired in a transflection mode, both experimentally and in simulated models, bringing into question the appropriateness of the technique for sample characterization, particularly in the field of spectroscopy of biological materials. The predicted effects are most notable in the regime where the sample thickness is comparable to the source wavelength. In this work, the model is extended to sample thicknesses more representative of biological tissue sections and to include typical experimental factors which are demonstrated to reduce the predicted effects. These include integration over the range of incidence angles, varying degrees of coherence of the source and inhomogeneities in sample thickness. The latter was found to have the strongest effect on the spectral distortions and, with inhomogeneities as low as 10% of the sample thickness, the predicted distortions due to the standing wave effect are almost completely averaged out. As the majority of samples for biospectroscopy are prepared by cutting a cross section of tissue resulting in a high degree of thickness variation, this finding suggests that the standing wave effect should be a minor distortion in FT-IR spectroscopy of tissues. The study has important implications not only in optimization of protocols for future studies, but notably for the validity of the extensive studies which have been performed to date on tissue samples in the transflection geometry

    Raman Spectroscopic Analysis of High Molecular Weight Proteins in Solution: Considerations for Sample Analysis and Data Pre-processing

    Get PDF
    This study explores the potential of Raman spectroscopy, coupled with multivariate regression techniques and a protein separation technique (ion exchange chromatography), to quantitatively monitor diagnostically relevant changes in high molecular weight proteins in liquid plasma. Measurement protocols to detect the imbalances in plasma proteins as an indicator of various diseases using Raman spectroscopy are optimised, such that strategic clinical applications for early stage disease diagnostics can be evaluated. In a simulated plasma protein mixture, concentrations of two proteins of identified diagnostic potential (albumin and fibrinogen) were systematically varied within physiologically relevant ranges. Scattering from the poorly soluble fibrinogen fraction is identified as a significant impediment to the accuracy of measurement of mixed proteins in solution, although careful consideration of pre-processing methods allows construction of an accurate multivariate regression prediction model for detecting subtle changes in the protein concentration. Furthermore, ion exchange chromatography is utilised to separate fibrinogen from the rest of the proteins and mild sonication is used to improve the dispersion and therefore quality of the prediction. The proposed approach can be expeditiously employed for early detection of pathological disorders associated with high or low plasma/serum proteins
    corecore