323 research outputs found

    Torts--Intentional--Wrongful Death by Liquor

    Get PDF

    Factors--Tobacco Warehousemen--Conversion of Mortgaged Property

    Get PDF

    Calcium to phosphorus ratio, essential elements and vitamin D content of infant foods in the UK: possible implications for bone health

    Get PDF
    Adequate intake of calcium and phosphorus in the appropriate ratio of 1–2:1 (Ca:P), in addition to magnesium and vitamin D, is vital for bone health and development of infants. In this feasibility study, the ratio of Ca:P in conjunction with vitamin D and other essential elements (Cu, Fe, K, Mg, Na, and Zn) in a range of commercial infant food products in the UK was investigated. The elemental analysis was carried out using inductively coupled plasma optical emission spectrometry, and vitamin D levels were determined using an enzyme-linked immunosorbent assay. The quantitative data were further evaluated, based on a standardised menu, to measure the total daily intake of an infant aged 7–12 months against the Reference Nutrient Intake. The results from the study show that the Ca:P ratio of the infant's total dietary intake was within the recommended range at 1.49:1. However, the level of intake for each of the nutrients analyzed, with the exception of sodium, was found to be above the Reference Nutrient Intake, which warrants further investigation in relation to both micronutrient interactions and in situations where the intake of fortified infant formula milk is compromised. Finally, as the study is the first to include consumption of infant snack products, the level of total calorie intake was also calculated in order to assess the total daily estimated energy intake; the results indicate that energy intakes exceed recommendations by 42%, which may have implications for obesity

    Oxidative Stress and Inflammation in Renal Patients and Healthy Subjects

    Get PDF
    The first goal of this study was to measure the oxidative stress (OS) and relate it to lipoprotein variables in 35 renal patients before dialysis (CKD), 37 on hemodialysis (HD) and 63 healthy subjects. The method for OS was based on the ratio of cholesteryl esters (CE) containing C18/C16 fatty acids (R2) measured by gas chromatography (GC) which is a simple, direct, rapid and reliable procedure. The second goal was to investigate and identify a triacylglycerol peak on GC, referred to as TG48 (48 represents the sum of the three fatty acids carbon chain lengths) which was markedly increased in renal patients compared to healthy controls. We measured TG48 in patients and controls. Mass spectrometry (MS) and MS twice in tandem were used to analyze the fatty acid composition of TG48. MS showed that TG48 was abundant in saturated fatty acids (SFAs) that were known for their pro-inflammatory property. TG48 was significantly and inversely correlated with OS. Renal patients were characterized by higher OS and inflammation than healthy subjects. Inflammation correlated strongly with TG, VLDL-cholesterol, apolipoprotein (apo) C-III and apoC-III bound to apoB-containing lipoproteins, but not with either total cholesterol or LDL-cholesterol

    Advances in structure elucidation of small molecules using mass spectrometry

    Get PDF
    The structural elucidation of small molecules using mass spectrometry plays an important role in modern life sciences and bioanalytical approaches. This review covers different soft and hard ionization techniques and figures of merit for modern mass spectrometers, such as mass resolving power, mass accuracy, isotopic abundance accuracy, accurate mass multiple-stage MS(n) capability, as well as hybrid mass spectrometric and orthogonal chromatographic approaches. The latter part discusses mass spectral data handling strategies, which includes background and noise subtraction, adduct formation and detection, charge state determination, accurate mass measurements, elemental composition determinations, and complex data-dependent setups with ion maps and ion trees. The importance of mass spectral library search algorithms for tandem mass spectra and multiple-stage MS(n) mass spectra as well as mass spectral tree libraries that combine multiple-stage mass spectra are outlined. The successive chapter discusses mass spectral fragmentation pathways, biotransformation reactions and drug metabolism studies, the mass spectral simulation and generation of in silico mass spectra, expert systems for mass spectral interpretation, and the use of computational chemistry to explain gas-phase phenomena. A single chapter discusses data handling for hyphenated approaches including mass spectral deconvolution for clean mass spectra, cheminformatics approaches and structure retention relationships, and retention index predictions for gas and liquid chromatography. The last section reviews the current state of electronic data sharing of mass spectra and discusses the importance of software development for the advancement of structure elucidation of small molecules
    corecore