333 research outputs found

    Determination of caspase-3 activation fails to predict chemosensitivity in primary acute myeloid leukemia blasts

    Get PDF
    BACKGROUND: Ex-vivo chemosensitivity tests that measure cell death induction may predict treatment outcome and, therefore, represent a powerful instrument for clinical decision making in cancer therapy. Such tests are, however, work intensive and, in the case of the DiSC-assay, require at least four days. Induction of apoptosis is the mode of action of anticancer drugs and should, therefore, result in the induction of caspase activation in cells targeted by anticancer therapy. METHODS: To determine, whether caspase activation can predict the chemosensitivity, we investigated enzyme activation of caspase-3, a key executioner caspase and correlated these data with chemosensitivity profiles of acute myeloid leukemia (AML) blasts. RESULTS: There was, however, no correlation between the ex-vivo chemosensitivity assessed by measuring the overall rates of cell death by use of the DiSC-assay and caspase-3 activation. CONCLUSION: Thus, despite a significant reduction of duration of the assay from four to one day, induction of apoptosis evaluated by capase-3 activity does not seem to be a valid surrogate marker for chemosensitivity

    Human Neonatal Dendritic Cells Are Competent in MHC Class I Antigen Processing and Presentation

    Get PDF
    Neonates are clearly more susceptible to severe disease following infection with a variety of pathogens than are adults. However, the causes for this are unclear and are often attributed to immunological immaturity. While several aspects of immunity differ between adults and neonates, the capacity of dendritic cells in neonates to process and present antigen to CD8+ T cells remains to be addressed. We used human CD8+ T cell clones to compare the ability of neonatal and adult monocyte-derived dendritic cells to present or process and present antigen using the MHC class I pathway. Specifically, we assessed the ability of dendritic cells to present antigenic peptide, present an HLA-E–restricted antigen, process and present an MHC class I-restricted antigen through the classical MHC class I pathway, and cross present cell-associated antigen via MHC class I. We found no defect in neonatal dendritic cells to perform any of these processing and presentation functions and conclude that the MHC class I antigen processing and presentation pathway is functional in neonatal dendritic cells and hence may not account for the diminished control of pathogens

    Early identification of young children at risk for poor academic achievement: preliminary development of a parent-report prediction tool

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Early school success is clearly related to later health. A prediction index that uses parent report to assess children's risk for poor academic achievement could potentially direct targeted service delivery to improve child outcomes.</p> <p>Methods</p> <p>We obtained risk factors through literature review and used the National Longitudinal Survey of Youth 1979 Child Files to examine the predictive associations of these factors with academic achievement scores.</p> <p>Results</p> <p>Twenty predictors were identified including four strong predictors (maternal education, child gender, family income, and low birth weight). Significantly, 12 predictors explained 17-24% of score variance.</p> <p>Conclusions</p> <p>Parent-reported factors provide predictive accuracy for academic achievement.</p

    Cancer therapy and cardiotoxicity: The need of serial Doppler echocardiography

    Get PDF
    Cancer therapy has shown terrific progress leading to important reduction of morbidity and mortality of several kinds of cancer. The therapeutic management of oncologic patients includes combinations of drugs, radiation therapy and surgery. Many of these therapies produce adverse cardiovascular complications which may negatively affect both the quality of life and the prognosis. For several years the most common noninvasive method of monitoring cardiotoxicity has been represented by radionuclide ventriculography while other tests as effort EKG and stress myocardial perfusion imaging may detect ischemic complications, and 24-hour Holter monitoring unmask suspected arrhythmias. Also biomarkers such as troponine I and T and B-type natriuretic peptide may be useful for early detection of cardiotoxicity. Today, the widely used non-invasive method of monitoring cardiotoxicity of cancer therapy is, however, represented by Doppler-echocardiography which allows to identify the main forms of cardiac complications of cancer therapy: left ventricular (systolic and diastolic) dysfunction, valve heart disease, pericarditis and pericardial effusion, carotid artery lesions. Advanced ultrasound tools, as Integrated Backscatter and Tissue Doppler, but also simple ultrasound detection of "lung comet" on the anterior and lateral chest can be helpful for early, subclinical diagnosis of cardiac involvement. Serial Doppler echocardiographic evaluation has to be encouraged in the oncologic patients, before, during and even late after therapy completion. This is crucial when using anthracyclines, which have early but, most importantly, late, cumulative cardiac toxicity. The echocardiographic monitoring appears even indispensable after radiation therapy, whose detrimental effects may appear several years after the end of irradiation

    The Insulator Protein SU(HW) Fine-Tunes Nuclear Lamina Interactions of the Drosophila Genome

    Get PDF
    Specific interactions of the genome with the nuclear lamina (NL) are thought to assist chromosome folding inside the nucleus and to contribute to the regulation of gene expression. High-resolution mapping has recently identified hundreds of large, sharply defined lamina-associated domains (LADs) in the human genome, and suggested that the insulator protein CTCF may help to demarcate these domains. Here, we report the detailed structure of LADs in Drosophila cells, and investigate the putative roles of five insulator proteins in LAD organization. We found that the Drosophila genome is also organized in discrete LADs, which are about five times smaller than human LADs but contain on average a similar number of genes. Systematic comparison to new and published insulator binding maps shows that only SU(HW) binds preferentially at LAD borders and at specific positions inside LADs, while GAF, CTCF, BEAF-32 and DWG are mostly absent from these regions. By knockdown and overexpression studies we demonstrate that SU(HW) weakens genome – NL interactions through a local antagonistic effect, but we did not obtain evidence that it is essential for border formation. Our results provide insights into the evolution of LAD organization and identify SU(HW) as a fine-tuner of genome – NL interactions

    Effects of beta-hydroxy-beta-methylbutyrate (HMB) on exercise performance and body composition across varying levels of age, sex, and training experience: A review

    Get PDF
    The leucine metabolite beta-hydroxy-beta-methylbutyrate (HMB) has been extensively used as an ergogenic aid; particularly among bodybuilders and strength/power athletes, who use it to promote exercise performance and skeletal muscle hypertrophy. While numerous studies have supported the efficacy of HMB in exercise and clinical conditions, there have been a number of conflicting results. Therefore, the first purpose of this paper will be to provide an in depth and objective analysis of HMB research. Special care is taken to present critical details of each study in an attempt to both examine the effectiveness of HMB as well as explain possible reasons for conflicting results seen in the literature. Within this analysis, moderator variables such as age, training experience, various states of muscle catabolism, and optimal dosages of HMB are discussed. The validity of dependent measurements, clustering of data, and a conflict of interest bias will also be analyzed. A second purpose of this paper is to provide a comprehensive discussion on possible mechanisms, which HMB may operate through. Currently, the most readily discussed mechanism has been attributed to HMB as a precursor to the rate limiting enzyme to cholesterol synthesis HMG-coenzyme A reductase. However, an increase in research has been directed towards possible proteolytic pathways HMB may operate through. Evidence from cachectic cancer studies suggests that HMB may inhibit the ubiquitin-proteasome proteolytic pathway responsible for the specific degradation of intracellular proteins. HMB may also directly stimulate protein synthesis, through an mTOR dependent mechanism. Finally, special care has been taken to provide future research implications
    • …
    corecore