25 research outputs found

    ??????????????? ????????? ????????? ?????? ??? ????????????

    Get PDF
    ??????????????? ????????? ???????????? ???????????? ?????? ?????????????????? ??????????????? ?????? ???????????? ??????. ??? ??????????????? ??????????????? ??? ?????? ????????? ???????????? ????????? ??????????????? ????????? ???????????????. ?????? ??????????????? ????????? ??? ?????? ????????? ???????????????, ??? ?????? ????????? diethylnitrosamine (DEN)??? C3H/HeN ?????? ?????? ?????? ???????????? ??? ?????? ????????? ????????? ???????????????. DEN?????? ????????? ???????????? ?????? alkaline phosphatase (ALP) ??????, TUNEL positive ???????????? ??????, ??? ???????????? ?????? ???????????? duct??? ??????, ?????????????????? ????????????, Masson???s trichrome ???????????? ????????? ???????????? ???, ?????? ?????? ?????? ??? ????????? ????????? ???????????? ?????? ???????????? ?????? ?????? ????????? ??? ?????????. ?????????, ??????????????? ?????? ???????????? ????????? ?????? ?????????????????? ??????, ?????? ?????? ??? ????????? ???????????? ??????????????? ???????????? ???????????? ???????????? ?????? ?????? ????????? ??? ?????????. ???????????? ???????????? ????????? ???????????? ??????, ???????????? ???????????? ???????????? ?????? ????????? ???, solvent partition ????????? ???????????? ????????? ???????????? hexane, ethyl acetate, water ???????????? ???????????????. ?????? ??????????????? ?????? ????????? ??????????????? ??????????????? ???, ethyl acetate ???????????? ??????????????? ????????? ?????????????????? ??????????????? ?????? ??????????????? ???????????? ????????? ????????? ????????? ??? ?????????. ????????? ethyl acetate???????????? ???????????? ????????? ????????? ??? ?????????, ??????????????? ????????? ??? ?????? ????????? ????????? ?????????. ???????????????, ??????????????? ????????? ????????????????????? ?????? ????????? ??? ?????? ????????? ???????????? ?????? ??????????????? ????????? ??? ?????? ????????? ????????? ????????? ?????? ???????????????. ?????????, ?????? ??????????????? ?????? ???????????? ?????? ??? ?????? ?????? ???????????? ??????????????? ?????? ????????? ????????? ??? ?????? ????????? ???????????? ??????.clos

    Wide Bandgap Semiconductor Nanorod and Thin Film Gas Sensors

    No full text
    In this review we discuss the advances in use of GaN and ZnO-based solid-statesensors for gas sensing applications. AlGaN/GaN high electron mobility transistors(HEMTs) show a strong dependence of source/drain current on the piezoelectricpolarization -induced two dimensional electron gas (2DEG). Furthermore, spontaneous andpiezoelectric polarization induced surface and interface charges can be used to develop verysensitive but robust sensors for the detection of gases. Pt-gated GaN Schottky diodes and Sc2O3/AlGaN/GaN metal-oxide semiconductor diodes also show large change in forwardcurrents upon exposure to H2 containing ambients. Of particular interest are methods fordetecting ethylene (C2H4), which offers problems because of its strong double bonds andhence the difficulty in dissociating it at modest temperatures. ZnO nanorods offer largesurface area, are bio-safe and offer excellent gas sensing characteristics

    Advances in Hydrogen, Carbon Dioxide, and Hydrocarbon Gas Sensor Technology Using GaN and ZnO-Based Devices

    Get PDF
    In this paper, we review our recent results in developing gas sensors for hydrogen using various device structures, including ZnO nanowires and GaN High Electron Mobility Transistors (HEMTs). ZnO nanowires are particularly interesting because they have a large surface area to volume ratio, which will improve sensitivity, and because they operate at low current levels, will have low power requirements in a sensor module. GaN-based devices offer the advantage of the HEMT structure, high temperature operation, and simple integration with existing fabrication technology and sensing systems. Improvements in sensitivity, recoverability, and reliability are presented. Also reported are demonstrations of detection of other gases, including CO2 and C2H4 using functionalized GaN HEMTs. This is critical for the development of lab-on-a-chip type systems and can provide a significant advance towards a market-ready sensor application

    Effectiveness of cone-beam computed tomography-generated cephalograms using artificial intelligence cephalometric analysis

    No full text
    Abstract Lateral cephalograms and related analysis constitute representative methods for orthodontic treatment. However, since conventional cephalometric radiographs display a three-dimensional structure on a two-dimensional plane, inaccuracies may be produced when quantitative evaluation is required. Cone-beam computed tomography (CBCT) has minimal image distortion, and important parts can be observed without overlapping. It provides a high-resolution three-dimensional image at a relatively low dose and cost, but still shows a higher dose than a lateral cephalogram. It is especially true for children who are more susceptible to radiation doses and often have difficult diagnoses. A conventional lateral cephalometric radiograph can be obtained by reconstructing the Digital Imaging and Communications in Medicine data obtained from CBCT. This study evaluated the applicability and consistency of lateral cephalograms generated by CBCT using an artificial intelligence analysis program. Group I comprised conventional lateral cephalometric radiographs, group II comprised lateral cephalometric radiographs generated from CBCT using OnDemand 3D, and group III comprised lateral cephalometric radiographs generated from CBCT using Invivo5. All measurements in the three groups showed non-significant results. Therefore, a CBCT scan and artificial intelligence programs are efficient means when performing orthodontic analysis on pediatric or orthodontic patients for orthodontic diagnosis and planning

    Wide Bandgap Semiconductor Nanorod and Thin Film Gas Sensors

    Get PDF
    In this review we discuss the advances in use of GaN and ZnO-based solid-statesensors for gas sensing applications. AlGaN/GaN high electron mobility transistors(HEMTs) show a strong dependence of source/drain current on the piezoelectricpolarization -induced two dimensional electron gas (2DEG). Furthermore, spontaneous andpiezoelectric polarization induced surface and interface charges can be used to develop verysensitive but robust sensors for the detection of gases. Pt-gated GaN Schottky diodes and Sc2O3/AlGaN/GaN metal-oxide semiconductor diodes also show large change in forwardcurrents upon exposure to H2 containing ambients. Of particular interest are methods fordetecting ethylene (C2H4), which offers problems because of its strong double bonds andhence the difficulty in dissociating it at modest temperatures. ZnO nanorods offer largesurface area, are bio-safe and offer excellent gas sensing characteristics

    ??????????????? ?????? ???????????? ??????????????? ?????? ???????????? ??????

    No full text
    ??? ???????????? ????????? ??????????????? ?????? ???????????? ????????? ???????????? ???????????? ????????? ??????????????? ???????????? ?????? in vitro ??? in vivo ???????????? ???????????????. ?????? ??????????????? ????????? ????????? ???????????? ??????????????? ??? ??? ?????? primary hepatocyte??? ?????? ????????? ?????????????????? ?????????????????? ?????? ??????????????? ?????? ?????? ??????????????? primary cardiomyocyte??? ?????? ????????? ????????? ?????????. ????????? ???????????? hexane, butanol, ethyl acetate, ?????? ???????????? liquid-liquid partition?????? ????????? ??????, ?????????????????? ??????????????? ?????? ????????? ????????? hexane ???????????? ????????? ????????????(PC3, 22Rv1, HeLa, PLC/PRF5, HepG2, Hep3B, SK-HEP-1, HCT116, NCI-H460, MDA-MB231, SKOV3)??? ?????? ????????? ??????????????? cardiomyocyte??? ?????? ????????? ????????? ???????????????. 0.4 mg/mL ????????? ???????????? cardiomyocyte??? ????????? ????????? ????????? ???????????? ?????????????????? hexane ???????????? ??? 20% ????????? ?????????????????? ???????????? ????????? ????????? ????????? ?????? ???????????????. ????????? ??????????????? ??????????????? ???????????? ??? ????????? ???????????? ????????? ??? ????????? ?????? ???????????????. ??? ????????? hexane??? ethyl acetate ??????????????? ???????????????, ????????????, ??????????????? ?????? ???????????? ???????????? ???????????? ??????????????? ??? ?????? ????????? ???????????????. ????????? hexane ???????????? ???????????? ??????????????? ?????? ???????????? ?????? ???????????? ?????? ?????????????????? ?????? ?????????????????? ??????????????? ??? ??????????????? ???????????? ??? ?????? ????????? ???????????????. ?????? ?????? ?????? ????????? ???????????? ??????????????? ?????? ??????????????? ???????????? ?????? ?????? ???????????? ???????????? ?????? ??????????????? ?????? ??? ????????? ???????????????. ??????????????? hexane ???????????? ??????????????? in vivo xenograft ????????? ???????????? ??????????????????, ?????????????????? SK-HEP-1??? ????????? ??????????????? hexane ???????????? 15?????? ???????????? ????????? ??? ????????? ????????? ???????????? ???????????? ?????? ???????????????, ?????? ??????????????? ?????? ???????????? ????????? ???????????? ???????????? ?????? ??? ??????????????? ??? ??? ?????? ????????? ???????????? ?????????. ????????? ???????????? ???????????? ??????????????? ?????? ???????????? ??????????????? in vitro??? in vivo?????? ????????? ??? ????????????, ????????? ??????????????? ????????? ?????? ????????? ?????? ???????????? ????????? ?????? ????????? ??????????????? ????????????.close

    Inhibitory effects of triphlorethol-A on MMP-1 induced by oxidative stress in human keratinocytes via ERK and AP-1 inhibition

    No full text
    Oxidative stress is known to generate reactive oxygen species (ROS) in cells, which subsequently induce the synthesis of matrix metalloproteinases (MMP) and an aging phenomenon. The protective effects of triphlorethol-A, derived from Ecklonia cava, were investigated against hydrogen peroxide (H(2)O(2))-induced damage using human skin keratinocytes. Data showed that triphlorethol-A inhibited ROS formation, induced catalase expression, inhibited DNA damage, and increased cell viability in keratinocytes. Triphlorethol-A treatment significantly reduced MMP-1 expression and production, compared to H(2)O(2)-treated cells. In addition, triphlorethol-A abrogated the activation of extracellular signal regulated protein kinase (ERK), which originates upstream of MMP-1 expression, and was induced by H(2)O(2) treatment. Moreover, triphlorethol-A inhibited DNA binding activity of activator protein-1 (AP-1), a downstream transcription factor of ERK. Data indicate that the antioxidative properties of triphlorethol-A involve the inhibition of MMP-1 via ERK and AP-1 inhibition

    Wide bandgap semiconductor nanorod and thin film gas sensors

    No full text
    Abstract: In this review we discuss the advances in use of GaN and ZnO-based solid-state sensors for gas sensing applications. AlGaN/GaN high electron mobility transistors (HEMTs) show a strong dependence of source/drain current on the piezoelectric polarization-induced two dimensional electron gas (2DEG). Furthermore, spontaneous and piezoelectric polarization induced surface and interface charges can be used to develop very sensitive but robust sensors for the detection of gases. Pt-gated GaN Schottky diodes and Sc2O3/AlGaN/GaN metal-oxide semiconductor diodes also show large change in forward currents upon exposure to H2 containing ambients. Of particular interest are methods for detecting ethylene (C2H4), which offers problems because of its strong double bonds and hence the difficulty in dissociating it at modest temperatures. ZnO nanorods offer large surface area, are bio-safe and offer excellent gas sensing characteristics
    corecore