24 research outputs found

    Does tuberculosis threaten our ageing populations?

    Get PDF
    BACKGROUND: The global population is ageing quickly and our understanding of age-related changes in the immune system suggest that the elderly will have less immunological protection from active tuberculosis (TB). DISCUSSION: Ongoing global surveillance of TB notifications shows increasing age of patients with active TB. This effect of age is compounded by changes to clinical manifestations of disease, confounding of diagnostic tests and increased rates of adverse reactions to antimicrobial treatment of TB. Future epidemiological surveillance, development of diagnostic tests and trials of treatment shortening should all include a focus on ageing people. More detailed surveillance of TB notifications in elderly people should be undertaken and carefully evaluated. Risk stratification will help target care for those in greatest need, particularly those with comorbidities or on immunosuppressive therapies. Novel diagnostics and treatment regimes should be designed specifically to be used in this cohort

    Tumor necrosis Factor (TNF) Bioactivity at the site of an acute cell-Mediated immune response is Preserved in rheumatoid arthritis Patients responding to anti-TNF Therapy

    Get PDF
    The impact of anti-tumor necrosis factor (TNF) therapies on inducible TNF-dependent activity in humans has never been evaluated in vivo. We aimed to test the hypothesis that patients responding to anti-TNF treatments exhibit attenuated TNF-dependent immune responses at the site of an immune challenge. We developed and validated four context-specific TNF-inducible transcriptional signatures to quantify TNF bioactivity in transcriptomic data. In anti-TNF treated rheumatoid arthritis (RA) patients, we measured the expression of these biosignatures in blood, and in skin biopsies from the site of tuberculin skin tests (TSTs) as a human experimental model of multivariate cell-mediated immune responses. In blood, anti-TNF therapies attenuated TNF bioactivity following ex vivo stimulation. However, at the site of the TST, TNF-inducible gene expression and genome-wide transcriptional changes associated with cell-mediated immune responses were comparable to that of RA patients receiving methotrexate only. These data demonstrate that anti-TNF agents in RA patients do not inhibit inducible TNF activity at the site of an acute inflammatory challenge in vivo, as modeled by the TST. We hypothesize instead that their therapeutic effects are limited to regulating TNF activity in chronic inflammation or by alternative non-canonical pathways

    Tumor Necrosis Factor (TNF) Bioactivity at the Site of an Acute Cell-Mediated Immune Response Is Preserved in Rheumatoid Arthritis Patients Responding to Anti-TNF Therapy

    Get PDF
    The impact of anti-tumor necrosis factor (TNF) therapies on inducible TNF-dependent activity in humans has never been evaluated in vivo. We aimed to test the hypothesis that patients responding to anti-TNF treatments exhibit attenuated TNF-dependent immune responses at the site of an immune challenge. We developed and validated four context-specific TNF-inducible transcriptional signatures to quantify TNF bioactivity in transcriptomic data. In anti-TNF treated rheumatoid arthritis (RA) patients, we measured the expression of these biosignatures in blood, and in skin biopsies from the site of tuberculin skin tests (TSTs) as a human experimental model of multivariate cell-mediated immune responses. In blood, anti-TNF therapies attenuated TNF bioactivity following ex vivo stimulation. However, at the site of the TST, TNF-inducible gene expression and genome-wide transcriptional changes associated with cell-mediated immune responses were comparable to that of RA patients receiving methotrexate only. These data demonstrate that anti-TNF agents in RA patients do not inhibit inducible TNF activity at the site of an acute inflammatory challenge in vivo, as modeled by the TST. We hypothesize instead that their therapeutic effects are limited to regulating TNF activity in chronic inflammation or by alternative non-canonical pathways

    Quantitative Characterization of the T Cell Receptor Repertoire of Naive and Memory subsets Using an Integrated experimental and Computational Pipeline Which Is Robust, economical, and Versatile

    Get PDF
    The T cell receptor (TCR) repertoire can provide a personalized biomarker for infectious and non-infectious diseases. We describe a protocol for amplifying, sequencing, and analyzing TCRs which is robust, sensitive, and versatile. The key experimental step is ligation of a single-stranded oligonucleotide to the 3′ end of the TCR cDNA. This allows amplification of all possible rearrangements using a single set of primers per locus. It also introduces a unique molecular identifier to label each starting cDNA molecule. This molecular identifier is used to correct for sequence errors and for effects of differential PCR amplification efficiency, thus producing more accurate measures of the true TCR frequency within the sample. This integrated experimental and computational pipeline is applied to the analysis of human memory and naive subpopulations, and results in consistent measures of diversity and inequality. After error correction, the distribution of TCR sequence abundance in all subpopulations followed a power law over a wide range of values. The power law exponent differed between naïve and memory populations, but was consistent between individuals. The integrated experimental and analysis pipeline we describe is appropriate to studies of T cell responses in a broad range of physiological and pathological contexts

    A comparison of rowing technique at different stroke rates: A description of sequencing, force production and kinematics

    No full text
    Low back pain is the commonest musculoskeletal complaint in rowers. Research into the relationship between rowing technique, the forces generated during the rowing stroke and the kinematics of spinal motion are increasing, but to date none have investigated the impact of different rowing intensities on this relationship. A technique has been developed using an electromagnetic motion system and strain gauge instrumented load cell to measure spinal and pelvic motion and force generated at the handle during rowing on an exercise rowing ergometer. Using this technique ten collegiate male rowers (mean age 22.1 ± 2.8 years) from local rowing clubs were investigated. The test protocol consisted of rowing on an ergometer at three different stroke ratings; 17 - 20 strokes per minute; 24 - 28 strokes per minute; and 28 - 36 strokes per minute. Each rating was held for four minutes, with a five-minute rest between each rating. Marked changes in the force output curve and lumbopelvic kinematics were observed at the different rowing intensities. Although there was no change in the magnitude of peak torque generated during the different rating, there was a marked shift in when this occurred during the stroke. In terms of kinematic changes, these centred around changes in pelvic rotation at the catch and finish stages of the stroke with significantly less anterior rotation occurring at the catch position at higher rowing intensities. To conclude, this study suggests that rowing kinematics and force profiles do change at higher rowing intensities. These changes may be an important factor with respect to injury mechanisms, however, further work is required at an elite level

    Tumor Necrosis Factor (TNF) bioactivity at the site of an acute cell-mediated immune response Is preserved in rheumatoid arthritis patients responding to Anti-TNF therapy

    No full text
    The impact of anti-tumor necrosis factor (TNF) therapies on inducible TNF-dependent activity in humans has never been evaluated in vivo. We aimed to test the hypothesis that patients responding to anti-TNF treatments exhibit attenuated TNF-dependent immune responses at the site of an immune challenge. We developed and validated four context-specific TNF-inducible transcriptional signatures to quantify TNF bioactivity in transcriptomic data. In anti-TNF treated rheumatoid arthritis (RA) patients, we measured the expression of these biosignatures in blood, and in skin biopsies from the site of tuberculin skin tests (TSTs) as a human experimental model of multivariate cell-mediated immune responses. In blood, anti-TNF therapies attenuated TNF bioactivity following ex vivo stimulation. However, at the site of the TST, TNF-inducible gene expression and genome-wide transcriptional changes associated with cell-mediated immune responses were comparable to that of RA patients receiving methotrexate only. These data demonstrate that anti-TNF agents in RA patients do not inhibit inducible TNF activity at the site of an acute inflammatory challenge in vivo, as modeled by the TST. We hypothesize instead that their therapeutic effects are limited to regulating TNF activity in chronic inflammation or by alternative non-canonical pathways.</p

    Quantitative Characterization of the t Cell Receptor Repertoire of Naïve and Memory subsets Using an Integrated experimental and Computational Pipeline Which Is Robust, economical, and Versatile

    No full text
    The T cell receptor (TCR) repertoire can provide a personalized biomarker for infectious and non-infectious diseases. We describe a protocol for amplifying, sequencing, and analyzing TCRs which is robust, sensitive, and versatile. The key experimental step is ligation of a single-stranded oligonucleotide to the 3′ end of the TCR cDNA. This allows amplification of all possible rearrangements using a single set of primers per locus. It also introduces a unique molecular identifier to label each starting cDNA molecule. This molecular identifier is used to correct for sequence errors and for effects of differential PCR amplification efficiency, thus producing more accurate measures of the true TCR frequency within the sample. This integrated experimental and computational pipeline is applied to the analysis of human memory and naive subpopulations, and results in consistent measures of diversity and inequality. After error correction, the distribution of TCR sequence abundance in all subpopulations followed a power law over a wide range of values. The power law exponent differed between naïve and memory populations, but was consistent between individuals. The integrated experimental and analysis pipeline we describe is appropriate to studies of T cell responses in a broad range of physiological and pathological contexts
    corecore