60 research outputs found
To the fiftieth anniversary of the KIPT torsatron program
The paper is dedicated to the 50th anniversary of controlled thermonuclear fusion studies performed at the KIPT on the specific stellarator-type experimental installations commonly referred to as “the torsatron”. Detailed data are reported on the operating thermonuclear facility “Uragan-2M”, the research results obtained with it, and also, the prospects for its use as a reactor. The advantages of the torsatron of this type are described, among them being the wide-range parameter variation capability. This is of importance for finding out the regularities related to plasma stability, heating and confinement.Робота присвячена 50-річчю досліджень у ХФТІ з проблеми керованого термоядерного синтезу на експериментальних установах спеціальної конструкції, яку прийнято називати торсатроном. Детально освітлені особливості конструкції діючої термоядерної установки торсатрона “Ураган-2М”, результати досліджень на ній та її реакторні перспективи. Відзначені достоїнства такого типу пристрою, що виражаються в можливостях широкої зміни параметрів, що важливо для встановлення закономірностей, пов’язаних із стійкістю, нагрівом і утриманням плазми.Работа посвящена 50-летию исследований в ХФТИ по проблеме управляемого термоядерного синтеза на экспериментальных установках специальной конструкции, которую принято называть торсатроном. Подробно освещены особенности конструкции действующей термоядерной установки торсатрона “Ураган- 2М”, результаты исследований на ней и ее реакторные перспективы. Отмечены достоинства такого типа устройства, выражающиеся в возможностях широкого изменения параметров, что важно для установления закономерностей, связанных с устойчивостью, нагревом и удержанием плазмы
Partial symmetry breaking and heteroclinic tangencies
We study some global aspects of the bifurcation of an equivariant family of
volume-contracting vector fields on the three-dimensional sphere. When part of
the symmetry is broken, the vector fields exhibit Bykov cycles. Close to the
symmetry, we investigate the mechanism of the emergence of heteroclinic
tangencies coexisting with transverse connections. We find persistent suspended
horseshoes accompanied by attracting periodic trajectories with long periods
Particle acceleration mechanisms
We review the possible mechanisms for production of non-thermal electrons
which are responsible for non-thermal radiation in clusters of galaxies. Our
primary focus is on non-thermal Bremsstrahlung and inverse Compton scattering,
that produce hard X-ray emission. We briefly review acceleration mechanisms and
point out that in most astrophysical situations, and in particular for the
intracluster medium, shocks, turbulence and plasma waves play a crucial role.
We consider two scenarios for production of non-thermal radiation. The first is
hard X-ray emission due to non-thermal Bremsstrahlung by nonrelativistic
particles. Non-thermal tails are produced by accelerating electrons from the
background plasma with an initial Maxwellian distribution. However, these tails
are accompanied by significant heating and they are present for a short time of
<10^6 yr, which is also the time that the tail will be thermalised. Such
non-thermal tails, even if possible, can only explain the hard X-ray but not
the radio emission which needs GeV or higher energy electrons. For these and
for production of hard X-rays by the inverse Compton model, we need the second
scenario where there is injection and subsequent acceleration of relativistic
electrons. It is shown that a steady state situation, for example arising from
secondary electrons produced from cosmic ray proton scattering by background
protons, will most likely lead to flatter than required electron spectra or it
requires a short escape time of the electrons from the cluster. An episodic
injection of relativistic electrons, presumably from galaxies or AGN, and/or
episodic generation of turbulence and shocks by mergers can result in an
electron spectrum consistent with observations but for only a short period of
less than one billion years.Comment: 22 pages, 5 figures, accepted for publication in Space Science
Reviews, special issue "Clusters of galaxies: beyond the thermal view",
Editor J.S. Kaastra, Chapter 11; work done by an international team at the
International Space Science Institute (ISSI), Bern, organised by J.S.
Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke
Nonthermal radiation mechanisms
In this paper we review the possible radiation mechanisms for the observed
non-thermal emission in clusters of galaxies, with a primary focus on the radio
and hard X-ray emission. We show that the difficulty with the non-thermal,
non-relativistic Bremsstrahlung model for the hard X-ray emission, first
pointed out by Petrosian (2001) using a cold target approximation, is somewhat
alleviated when one treats the problem more exactly by including the fact that
the background plasma particle energies are on average a factor of 10 below the
energy of the non-thermal particles. This increases the lifetime of the
non-thermal particles, and as a result decreases the extreme energy
requirement, but at most by a factor of three. We then review the synchrotron
and so-called inverse Compton emission by relativistic electrons, which when
compared with observations can constrain the value of the magnetic field and
energy of relativistic electrons. This model requires a low value of the
magnetic field which is far from the equipartition value. We briefly review the
possibilities of gamma-ray emission and prospects for GLAST observations. We
also present a toy model of the non-thermal electron spectra that are produced
by the acceleration mechanisms discussed in an accompanying paper.Comment: 17 pages, 6 figures, accepted for publication in Space Science
Reviews, special issue "Clusters of galaxies: beyond the thermal view",
Editor J.S. Kaastra, Chapter 10; work done by an international team at the
International Space Science Institute (ISSI), Bern, organised by J.S.
Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke
Recent Advances in Understanding Particle Acceleration Processes in Solar Flares
We review basic theoretical concepts in particle acceleration, with
particular emphasis on processes likely to occur in regions of magnetic
reconnection. Several new developments are discussed, including detailed
studies of reconnection in three-dimensional magnetic field configurations
(e.g., current sheets, collapsing traps, separatrix regions) and stochastic
acceleration in a turbulent environment. Fluid, test-particle, and
particle-in-cell approaches are used and results compared. While these studies
show considerable promise in accounting for the various observational
manifestations of solar flares, they are limited by a number of factors, mostly
relating to available computational power. Not the least of these issues is the
need to explicitly incorporate the electrodynamic feedback of the accelerated
particles themselves on the environment in which they are accelerated. A brief
prognosis for future advancement is offered.Comment: This is a chapter in a monograph on the physics of solar flares,
inspired by RHESSI observations. The individual articles are to appear in
Space Science Reviews (2011
Non-thermal processes in cosmological simulations
Non-thermal components are key ingredients for understanding clusters of
galaxies. In the hierarchical model of structure formation, shocks and
large-scale turbulence are unavoidable in the cluster formation processes.
Understanding the amplification and evolution of the magnetic field in galaxy
clusters is necessary for modelling both the heat transport and the dissipative
processes in the hot intra-cluster plasma. The acceleration, transport and
interactions of non-thermal energetic particles are essential for modelling the
observed emissions. Therefore, the inclusion of the non-thermal components will
be mandatory for simulating accurately the global dynamical processes in
clusters. In this review, we summarise the results obtained with the
simulations of the formation of galaxy clusters which address the issues of
shocks, magnetic field, cosmic ray particles and turbulence.Comment: 27 pages, 16 figures, accepted for publication in Space Science
Reviews, special issue "Clusters of galaxies: beyond the thermal view",
Editor J.S. Kaastra, Chapter 15; work done by an international team at the
International Space Science Institute (ISSI), Bern, organised by J.S.
Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke
Pulsar Wind Nebulae with Bow Shocks: Non-thermal Radiation and Cosmic Ray Leptons
Pulsars with high spin-down power produce relativistic winds radiating a non-negligible fraction of this power over the whole electromagnetic range from radio to gamma-rays in the pulsar wind nebulae (PWNe). The rest of the power is dissipated in the interactions of the PWNe with the ambient interstellar medium (ISM). Some of the PWNe are moving relative to the ambient ISM with supersonic speeds producing bow shocks. In this case, the ultrarelativistic particles accelerated at the termination surface of the pulsar wind may undergo reacceleration in the converging flow system formed by the plasma outflowing from the wind termination shock and the plasma inflowing from the bow shock. The presence of magnetic perturbations in the flow, produced by instabilities induced by the accelerated particles themselves, is essential for the process to work. A generic outcome of this type of reacceleration is the creation of particle distributions with very hard spectra, such as are indeed required to explain the observed spectra of synchrotron radiation with photon indices Γ≲ 1.5. The presence of this hard spectral component is specific to PWNe with bow shocks (BSPWNe). The accelerated particles, mainly electrons and positrons, may end up containing a substantial fraction of the shock ram pressure. In addition, for typical ISM and pulsar parameters, the e+ released by these systems in the Galaxy are numerous enough to contribute a substantial fraction of the positrons detected as cosmic ray (CR) particles above few tens of GeV and up to several hundred GeV. The escape of ultrarelativistic particles from a BSPWN—and hence, its appearance in the far-UV and X-ray bands—is determined by the relative directions of the interstellar magnetic field, the velocity of the astrosphere and the pulsar rotation axis. In this respect we review the observed appearance and multiwavelength spectra of three different types of BSPWNe: PSR J0437-4715, the Guitar and Lighthouse nebulae, and Vela-like objects. We argue that high resolution imaging of such objects provides unique information both on pulsar winds and on the ISM. We discuss the interpretation of imaging observations in the context of the model outlined above and estimate the BSPWN contribution to the positron flux observed at the Earth
- …