86 research outputs found

    Quantitative sensory testing in children with sickle cell disease: additional insights and future possibilities.

    Get PDF
    Quantitative sensory testing (QST) is used in a variety of pain disorders to characterize pain and predict prognosis and response to specific therapies. In this study, we aimed to confirm results in the literature documenting altered QST thresholds in sickle cell disease (SCD) and assess the test-retest reliability of results over time. Fifty-seven SCD and 60 control subjects aged 8-20 years underwent heat and cold detection and pain threshold testing using a Medoc TSAII. Participants were tested at baseline and 3 months; SCD subjects were additionally tested at 6 months. An important facet of our study was the development and use of a novel QST modelling approach, allowing us to model all data together across modalities. We have not demonstrated significant differences in thermal thresholds between subjects with SCD and controls. Thermal thresholds were consistent over a 3- to 6-month period. Subjects on whom hydroxycarbamide (HC) was initiated shortly before or after baseline testing (new HC users) exhibited progressive decreases in thermal sensitivity from baseline to 6 months, suggesting that thermal testing may be sensitive to effective therapy to prevent vasoocclusive pain. These findings inform the use of QST as an endpoint in the evaluation of preventative pain therapies

    Phenylketonuria in Portugal: Genotype-Phenotype Correlations Using Molecular, Biochemical, and Haplotypic Analyses

    Get PDF
    The impairment of the hepatic enzyme phenylalanine hydroxylase (PAH) causes elevation of phenylalanine levels in blood and other body fluids resulting in the most common inborn error of amino acid metabolism (phenylketonuria). Persistently high levels of phenylalanine lead to irreversible damage to the nervous system. Therefore, early diagnosis of the affected individuals is important, as it can prevent clinical manifestations of the disease.info:eu-repo/semantics/publishedVersio

    Human phenylalanine hydroxylase mutations and hyperphenylalaninemia phenotypes: a metanalysis of genotype-phenotype correlations.

    Get PDF
    We analyzed correlations between mutant genotypes at the human phenylalanine hydroxylase locus (gene symbol PAH) and the corresponding hyperphenylalaninemia (HPA) phenotypes (notably, phenylketonuria [OMIM 261600]). We used reports, both published and in the PAH Mutation Analysis Consortium Database, on 365 patients harboring 73 different PAH mutations in 161 different genotypes. HPA phenotypes were classified as phenylketonuria (PKU), variant PKU, and non-PKU HPA. By analysis both of homoallelic mutant genotypes and of "functionally hemizygous" heteroallelic genotypes, we characterized the phenotypic effect of 48 of the 73 different, largely missense mutations. Among those with consistent in vivo expression, 24 caused PKU, 3 caused variant PKU, and 10 caused non-PKU HPA. However, 11 mutations were inconsistent in their effect: 9 appeared in two different phenotype classes, and 2 (I65T and Y414C) appeared in all three classes. Seven mutations were inconsistent in phenotypic effect when in vitro (unit-protein) expression was compared with the corresponding in vivo phenotype (an emergent property). We conclude that the majority of PAH mutations confer a consistent phenotype and that this is concordant with their effects, when known, predicted from in vitro expression analysis. However, significant inconsistencies, both between in vitro and in vivo phenotypes and between different individuals with similar PAH genotypes, reveal that the HPA-phenotype is more complex than that predicted by Mendelian inheritance of alleles at the PAH locus
    corecore