1,373 research outputs found

    Magnetoplasmons excitations in graphene for filling factors ν≤6\nu \leq 6

    Full text link
    In the frame of the Hartree-Fock approximation, the dispersion of magnetoplasmons in Graphene is derived for all types of transitions for filling factors ν≤6\nu\leq 6. The optical conductivity components of the magnetoplasmon curves are calculated. It is shown that the electron-electron interactions lead to a strong re-normalization of the apparent Fermi velocity of Graphene which is different for different types of transitions.Comment: 15 pages, 7 figure

    Evidence for magnetoplasmon character of the cyclotron resonance response of a two-dimensional electron gas

    Full text link
    Experimental results on the absolute magneto-transmission of a series of high density, high mobility GaAs quantum wells are compared with the predictions of a recent magnetoplasmon theory for values of the filling factor above 2. We show that the magnetoplasmon picture can explain the non-linear features observed in the magnetic field evolution of the cyclotron resonance energies and of the absorption oscillator strength. This provides experimental evidence that inter Landau level excitations probed by infrared spectroscopy need to be considered as many body excitations in terms of magnetoplasmons: this is especially true when interpreting the oscillator strengths of the cyclotron transitions

    Spin-Orbit Coupling and Tunneling Current in a Parabolic Quantum Dot

    Full text link
    We propose a novel approach to explore the properties of a quantum dot in the presence of the spin-orbit interaction and in a tilted magnetic field. The spin-orbit coupling within the quantum dot manifest itself as anti-crossing of the energy levels when the tilt angle is varied. The anti-crossing gap has a non-monotonic dependence on the magnitude of the magnetic field and exhibits a peak at some finite values of the magnetic field. From the dependence of the tunneling current through the quantum dot on the bias voltage and the tilt angle, the anti-crossing gap and most importantly the spin-orbit strength can be uniquely determined

    Two exact properties of the perturbative expansion for the two-dimensional electron liquid with Rashba or Dresselhaus spin-orbit coupling

    Full text link
    We have identified two useful exact properties of the perturbative expansion for the case of a two-dimensional electron liquid with Rashba or Dresselhaus spin-orbit interaction and in the absence of magnetic field. The results allow us to draw interesting conclusions regarding the dependence of the exchange and correlation energy and of the quasiparticle properties on the strength of the spin-orbit coupling which are valid to all orders in the electron-electron interaction.Comment: 6 pages, 1 figur

    Anomalous Hall effect in a two-dimensional electron gas with spin-orbit interaction

    Full text link
    We discuss the mechanism of anomalous Hall effect related to the contribution of electron states below the Fermi surface (induced by the Berry phase in momentum space). Our main calculations are made within a model of two-dimensional electron gas with spin-orbit interaction of the Rashba type, taking into account the scattering from impurities. We demonstrate that such an "intrinsic" mechanism can dominate but there is a competition with the impurity-scattering mechanism, related to the contribution of states in the vicinity of Fermi surface. We also show that the contribution to the Hall conductivity from electron states close to the Fermi surface has the intrinsic properties as well.Comment: 9 pages, 6 figure
    • …
    corecore