53 research outputs found
Assessment of circulating biomarkers for potential pharmacodynamic utility in patients with lymphoma
Gene expression profile of peripheral blood lymphocytes from renal cell carcinoma patients treated with IL-2, Interferon-α and dendritic cell vaccine
© The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 7 (2012): e50221, doi:10.1371/journal.pone.0050221.Lymphocytes are a key component of the immune system and their differentiation and function are directly influenced by cancer. We examined peripheral blood lymphocyte (PBL) gene expression as a biomarker of illness and treatment effect using the Affymetrix Human Gene ST1 platform in patients with metastatic renal cell carcinoma (mRCC) who received combined treatment with IL-2, interferon-?-2a and dendritic cell vaccine. We examined gene expression, cytokine levels in patient serum and lymphocyte subsets as determined by flow cytometry (FCM). Pre-treatment PBLs from patients with mRCC exhibit a gene expression profile and serum cytokine profile consistent with inflammation and proliferation not found in healthy donors (HD). PBL gene expression from patients with mRCC showed increased mRNA of genes involved with T-cell and TREG-cell activation pathways, which was also reflected in lymphocyte subset distribution. Overall, PBL gene expression post-treatment (POST) was not significantly different than pre-treatment (PRE). Nevertheless, treatment related changes in gene expression (post-treatment minus pre-treatment) revealed an increased expression of T-cell and B-cell receptor signaling pathways in responding (R) patients compared to non-responding (NR) patients. In addition, we observed down-regulation of TREG-cell pathways post-treatment in R vs. NR patients. While exploratory in nature, this study supports the hypothesis that enhanced inflammatory cytotoxic pathways coupled with blunting of the regulatory pathways is necessary for effective anti-cancer activity associated with immune therapy. This type of analysis can potentially identify additional immune therapeutic targets in patients with mRCC.This work was supported by grants from the National Institutes of Health (RO1 CA5648, R21CA112761, P20RR016437, and P30CA023108)
The earliest thymic T cell progenitors sustain B cell and myeloid lineage potential
The stepwise commitment from hematopoietic stem cells in the bone marrow to T lymphocyte-restricted progenitors in the thymus represents a paradigm for understanding the requirement for distinct extrinsic cues during different stages of lineage restriction from multipotent to lineage-restricted progenitors. However, the commitment stage at which progenitors migrate from the bone marrow to the thymus remains unclear. Here we provide functional and molecular evidence at the single-cell level that the earliest progenitors in the neonatal thymus had combined granulocyte-monocyte, T lymphocyte and B lymphocyte lineage potential but not megakaryocyte-erythroid lineage potential. These potentials were identical to those of candidate thymus-seeding progenitors in the bone marrow, which were closely related at the molecular level. Our findings establish the distinct lineage-restriction stage at which the T cell lineage-commitment process transits from the bone marrow to the remote thymus. © 2012 Nature America, Inc. All rights reserved
Acute Multiple Organ Failure in Adult Mice Deleted for the Developmental Regulator Wt1
There is much interest in the mechanisms that regulate adult tissue homeostasis and their relationship to processes governing foetal development. Mice deleted for the Wilms' tumour gene, Wt1, lack kidneys, gonads, and spleen and die at mid-gestation due to defective coronary vasculature. Wt1 is vital for maintaining the mesenchymal–epithelial balance in these tissues and is required for the epithelial-to-mesenchyme transition (EMT) that generates coronary vascular progenitors. Although Wt1 is only expressed in rare cell populations in adults including glomerular podocytes, 1% of bone marrow cells, and mesothelium, we hypothesised that this might be important for homeostasis of adult tissues; hence, we deleted the gene ubiquitously in young and adult mice. Within just a few days, the mice suffered glomerulosclerosis, atrophy of the exocrine pancreas and spleen, severe reduction in bone and fat, and failure of erythropoiesis. FACS and culture experiments showed that Wt1 has an intrinsic role in both haematopoietic and mesenchymal stem cell lineages and suggest that defects within these contribute to the phenotypes we observe. We propose that glomerulosclerosis arises in part through down regulation of nephrin, a known Wt1 target gene. Protein profiling in mutant serum showed that there was no systemic inflammatory or nutritional response in the mutant mice. However, there was a dramatic reduction in circulating IGF-1 levels, which is likely to contribute to the bone and fat phenotypes. The reduction of IGF-1 did not result from a decrease in circulating GH, and there is no apparent pathology of the pituitary and adrenal glands. These findings 1) suggest that Wt1 is a major regulator of the homeostasis of some adult tissues, through both local and systemic actions; 2) highlight the differences between foetal and adult tissue regulation; 3) point to the importance of adult mesenchyme in tissue turnover
Delineating the cellular pathways of hematopoietic lineage commitment.
The prevailing model for adult hematopoiesis postulates that the first lineage commitment step results in a strict separation of common myeloid and common lymphoid pathways. However, the recent identification of granulocyte/monocyte (GM)-lymphoid restricted lymphoid-primed multipotent progenitors (LMPPs) and primitive common myeloid progenitors (CMPs) within the "HSC" compartment provide compelling support for establishment of independent GM-megakaryocyte/erythroid (GM-MkE) and GM-lymphoid commitment pathways as decisive early lineage fate decisions. These changes in lineage potentials are corroborated by corresponding changes in multilineage transcriptional priming, as LMPPs down-regulate MkE priming but become GM-lymphoid transcriptionally primed, whereas CMPs are GM-MkE primed. These distinct biological and molecular relationships are established already in the fetal liver
Delineation of the earliest lineage commitment steps of haematopoietic stem cells: new developments, controversies and major challenges.
PURPOSE OF REVIEW: This review addresses recently reported evidence for alternative cellular pathways for haematopoietic stem cell lineage commitment. RECENT FINDINGS: Using various approaches, several laboratories suggested the existence of adult as well as foetal multipotent progenitor cells with combined B cell, T cell and granulocyte/macrophage potential, but little or no megakaryocyte/erythroid potential. Compared with haematopoietic stem cells, these multipotent progenitor cells exhibited downregulated transcriptional expression of genes of the megakaryocyte/erythroid lineages and upregulated expression of lymphoid lineage genes. The existence of these lineage-restricted multipotent progenitor cells suggests that the first lineage commitment step of haematopoietic stem cells does not result in strict separation into myelopoiesis and lymphopoiesis, and that there might be alternative pathways for commitment toward different lineage fates. These findings have been questioned by other studies, however. To resolve this controversy and establish the complete road map for haematopoietic lineage commitment, improved tools and more stringent standards for how to identify and characterize lineage fate options of distinct stem and progenitor cells are needed. SUMMARY: Current and future progress in establishing the complete cellular roadmap for haematopoietic lineage commitment will permit identification and characterization of key regulators of lineage fate decisions in haematopoietic stem cells
Biological and molecular evidence for existence of lymphoid-primed multipotent progenitors.
Studies from our and other laboratories have over the last 2 years implicated the existence of multipotent progenitors (MPPs) with combined granulocyte-macrophage, B cell, and T cell potential, but little or no megakaryocyte-erythroid (MkE) potential in the adult bone marrow Lineage(-)SCA-1(+)KIT(+) (LSK) compartment of multipotent stem and progenitor cells. The evidence for the existence of LSKCD34(+)FLT3(hi) lymphoid-primed MPPs (LMPPs) implicates that a strict separation into common myeloid and lymphoid pathways might not be the first lineage commitment step of hematopoietic stem cells (HSCs). Together with the evidence for existence of common myeloid and common lymphoid progenitors (CMPs and CLPs, respectively), the identification of LMPPs also suggests that at least the granulocyte-macrophage lineage can be generated through alternative pathways. However, the existence of LMPPs has recently been questioned, as there is evidence that at least a fraction of LSKCD34(+)FLT3(hi) cells sustains MkE potential. Thus, in more recent studies we have in more detail compared the molecular signature of adult LMPPs to populations of LSK cells enriched for cells with pluripotent HSC activity. Notably, we have found at the global as well as single-cell level that LMPPs when compared with pluripotent HSCs downregulate the transcriptional priming of genes typically expressed in cells of the MkE lineage, while upregulating early lymphoid genes. Although other studies have suggested that the earliest HSC commitment steps might differ in fetal and adult hematopoiesis, we have also obtained evidence suggesting that the LMPP is defined already during fetal development
FLT3 receptor and ligand are dispensable for maintenance and posttransplantation expansion of mouse hematopoietic stem cells.
Originally cloned from hematopoietic stem cell (HSC) populations and its ligand being extensively used to promote ex vivo HSC expansion, the FMS-like tyrosine kinase 3 (FLT3; also called FLK2) receptor and its ligand (FL) were expected to emerge as an important physiologic regulator of HSC maintenance and expansion. However, the role of FLT3 receptor and ligand in HSC regulation remains unclear and disputed. Herein, using Fl-deficient mice, we establish for the first time that HSC expansion in fetal liver and after transplantation is FL independent. Because previous findings in Flk2(-/-) mice were compatible with an important role of FLT3 receptor in HSC regulation and because alternative ligands might potentially interact directly or indirectly with FLT3 receptor, we here also characterized HSCs in Flk2(-/-) mice. Advanced phenotypic as well as functional evaluation of Flk2(-/-) HSCs showed that the FLT3 receptor is dispensable for HSC steady-state maintenance and expansion after transplantation. Taken together, these studies show that the FLT3 receptor and ligand are not critical regulators of mouse HSCs, neither in steady state nor during fetal or posttransplantation expansion
GATA3 is redundant for maintenance and self-renewal of hematopoietic stem cells.
GATA3 has been identified as a master regulator of T helper cells, as well as being important for early thymic progenitors and T-cell commitment. However, Gata3 expression initiates already at the hematopoietic stem cell (HSC) level, implicating a potential role also in the regulation of HSCs. Herein we used a conditional Gata3 knockout strategy in which Gata3 expression was completely deleted from the earliest stage of embryonic hematopoietic development after emergence of HSCs from hemogenic endothelium. Through a detailed analysis of HSCs at the phenotypic and functional level, we demonstrate that steady-state levels of HSCs are normal in Gata3(fl/fl)Vav-Cre(tg/+) mice. Moreover, through long-term primary and secondary transplantation experiments, we also unequivocally demonstrate that Gata3 has a redundant role in post-transplantation HSC self-renewal
- …