4 research outputs found
Co-Combustion Behavior of Paper Sludge Hydrochar and Pulverized Coal: Low Rank Coal and Its Product by Hydrothermal Carbonization
In this paper, the combustion behavior of low rank coal and its product after hydrothermal carbonization with paper sludge hydrochar were studied. The Raman technique was used to compare the structural differences between raw coal and the product. Thermogravimetric analysis was employed to conduct experiments of single sample and their mixtures with different proportions at a heating rate of 20 °C/min, the activation energy of chemical reactions was calculated. The results showed that upgraded product had higher carbon ordering degree than raw coal and the ignition temperature and burnout temperature of the product were advanced. Compared with raw coal, the combustion characteristic parameters C and S of the product were higher, indicating that its combustibility was better. As for the mixture, when the paper sludge hydrochar ratio was not more than 10%, the mixed fuel combustion curve was still similar to coal curve. After the paper sludge hydrochar ratio exceeded 10%, the activation energy of the mixed combustion reaction of paper sludge hydrochar and upgraded coal was lower than that of raw coal and paper sludge hydrochar. These results indicated that the mixture of upgraded coal and paper sludge hydrochar as mixed fuel was a better option
Graphitization of Coke and Its Interaction with Slag in the Hearth of a Blast Furnace
Coke reaction behavior in the blast furnace hearth has yet to be fully understood due to limited access to the high temperature zone. The graphitization of coke and its interaction with slag in the hearth of blast furnace were investigated with samples obtained from the center of the deadman of a blast furnace during its overhaul period. All hearth coke samples from fines to lumps were confirmed to be highly graphitized, and the graphitization of coke in the high temperature zone was convinced to start from the coke surface and lead to the formation of coke fines. It will be essential to perform further comprehensive investigations on graphite formation and its evolution in a coke as well as its multi-effect on blast furnace performance. The porous hearth cokes were found to be filled up with final slag. Further research is required about the capability of coke to fill final slag and the attack of final slag on the hearth bottom refractories since this might be a new degradation mechanism of refractories located in the hearth bottom.This work was financially supported by the Open Foundation of the State Key Laboratory of Advanced Metallurgy (41603007), the National Natural Science Foundation of China and Baosteel Group Co., LTD of Shanghai for the Key Joint Project (U1260202), and the National Science Foundation for Young Scientists of China (51304014). The authors gratefully acknowledge financial support from China Scholarship Council (award to Kejiang Li for one year’s study abroad at the University of Toronto)