23 research outputs found

    Severe Metformin Poisoning Successfully Treated with Simultaneous Venovenous Hemofiltration and Prolonged Intermittent Hemodialysis

    Get PDF
    Metformin poisoning is a life-threatening condition with a high mortality rate. We present a patient case of metformin poisoning following intake of 80 g metformin resulting in severe lactate acidosis with a nadir pH of 6.73 and circulatory collapse, successfully treated with addition of prolonged intermittent hemodialysis (HD) to continuous venovenous hemofiltration (CVVH). The patient’s pH became normal 48 hours after metformin ingestion during simultaneous CVVH and addition of 22 hours of intermittent HD in the ICU. The highest metformin level was found to be 991 μmol/L (therapeutic range 3.9–23.2 μmol/L). We conclude that in cases of severe metformin poisoning with circulatory shock and extreme lactic acidosis, the usual CVVH modality might not efficiently clear metformin. Therefore, additional prolonged HD should be considered even in the state of cardiovascular collapse with vasopressor requirement

    The thick left ventricular wall of the giraffe heart normalises wall tension, but limits stroke volume and cardiac output

    Get PDF
    Giraffes – the tallest extant animals on Earth – are renowned for their high central arterial blood pressure, which is necessary to secure brain perfusion. The pressure which may exceed 300 mmHg has historically been attributed to an exceptionally large heart. Recently, this has been refuted by several studies demonstrating that the mass of giraffe heart is similar to that of other mammals when expressed relative to body mass. It remains enigmatic, however, how the normal-sized giraffe heart generates such massive arterial pressures. We hypothesized that giraffe hearts have a small intraventricular cavity and a relatively thick ventricular wall, allowing for generation of high arterial pressures at normal left ventricular wall tension. In nine anaesthetized giraffes (495±38 kg), we determined in vivo ventricular dimensions using echocardiography along with intraventricular and aortic pressures to calculate left ventricular wall stress. Cardiac output was also determined by inert gas rebreathing to provide an additional and independent estimate of stroke volume. Echocardiography and inert gas-rebreathing yielded similar cardiac outputs of 16.1±2.5 and 16.4±1.4 l min−1, respectively. End-diastolic and end-systolic volumes were 521±61 ml and 228±42 ml, yielding an ejection fraction of 56±4%, and a stroke volume of 0.59 ml kg−1. Left ventricular circumferential wall stress was 7.83±1.76 kPa. We conclude that, relative to body mass, a small left ventricular cavity and a low stroke volume characterizes the giraffe heart. The adaptations result in typical mammalian left ventricular wall tensions, but results in lowered cardiac output.</jats:p

    Drug-induced mild therapeutic hypothermia obtained by administration of a transient receptor potential vanilloid type 1 agonist

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The use of mechanical/physical devices for applying mild therapeutic hypothermia is the only proven neuroprotective treatment for survivors of out of hospital cardiac arrest. However, this type of therapy is cumbersome and associated with several side-effects. We investigated the feasibility of using a transient receptor potential vanilloid type 1 (TRPV1) agonist for obtaining drug-induced sustainable mild hypothermia.</p> <p>Methods</p> <p>First, we screened a heterogeneous group of TRPV1 agonists and secondly we tested the hypothermic properties of a selected candidate by dose-response studies. Finally we tested the hypothermic properties in a large animal. The screening was in conscious rats, the dose-response experiments in conscious rats and in cynomologus monkeys, and the finally we tested the hypothermic properties in conscious young cattle (calves with a body weight as an adult human). The investigated TRPV1 agonists were administered by continuous intravenous infusion.</p> <p>Results</p> <p>Screening: Dihydrocapsaicin (DHC), a component of chili pepper, displayed a desirable hypothermic profile with regards to the duration, depth and control in conscious rats. Dose-response experiments: In both rats and cynomologus monkeys DHC caused a dose-dependent and immediate decrease in body temperature. Thus in rats, infusion of DHC at doses of 0.125, 0.25, 0.50, and 0.75 mg/kg/h caused a maximal ΔT (°C) as compared to vehicle control of -0.9, -1.5, -2.0, and -4.2 within approximately 1 hour until the 6 hour infusion was stopped. Finally, in calves the intravenous infusion of DHC was able to maintain mild hypothermia with ΔT > -3°C for more than 12 hours.</p> <p>Conclusions</p> <p>Our data support the hypothesis that infusion of dihydrocapsaicin is a candidate for testing as a primary or adjunct method of inducing and maintaining therapeutic hypothermia.</p

    Severe Metformin Poisoning Successfully Treated with Simultaneous Venovenous Hemofiltration and Prolonged Intermittent Hemodialysis

    Get PDF
    Metformin poisoning is a life-threatening condition with a high mortality rate. We present a patient case of metformin poisoning following intake of 80 g metformin resulting in severe lactate acidosis with a nadir pH of 6.73 and circulatory collapse, successfully treated with addition of prolonged intermittent hemodialysis (HD) to continuous venovenous hemofiltration (CVVH). The patient’s pH became normal 48 hours after metformin ingestion during simultaneous CVVH and addition of 22 hours of intermittent HD in the ICU. The highest metformin level was found to be 991 μmol/L (therapeutic range 3.9–23.2 μmol/L). We conclude that in cases of severe metformin poisoning with circulatory shock and extreme lactic acidosis, the usual CVVH modality might not efficiently clear metformin. Therefore, additional prolonged HD should be considered even in the state of cardiovascular collapse with vasopressor requirement
    corecore