7,251 research outputs found
-Electron Ferromagnetism in Metal Free Carbon Probed by Soft X-Ray Dichroism
Elemental carbon represents a fundamental building block of matter and the
possibility of ferromagnetic order in carbon attracted widespread attention.
However, the origin of magnetic order in such a light element is only poorly
understood and has puzzled researchers. We present a spectromicroscopy study at
room temperature of proton irradiated metal free carbon using the elemental and
chemical specificity of x-ray magnetic circular dichroism (XMCD). We
demonstrate that the magnetic order in the investigated system originates only
from the carbon -electron system.Comment: 10 pages 3 color figure
The role of hydrogen in room-temperature ferromagnetism at graphite surfaces
We present a x-ray dichroism study of graphite surfaces that addresses the
origin and magnitude of ferromagnetism in metal-free carbon. We find that, in
addition to carbon states, also hydrogen-mediated electronic states
exhibit a net spin polarization with significant magnetic remanence at room
temperature. The observed magnetism is restricted to the top 10 nm of
the irradiated sample where the actual magnetization reaches emu/g
at room temperature. We prove that the ferromagnetism found in metal-free
untreated graphite is intrinsic and has a similar origin as the one found in
proton bombarded graphite.Comment: 10 pages, 5 figures, 1 table, submitted to New Journal of Physic
Students\u27 Emotions for Achievement and Technology Use in Synchronous Hybrid Graduate Programmes: A Control-Value Approach
Synchronous hybrid delivery (simultaneously teaching on-campus and online students using web conferencing) is becoming more common; however, little is known about how students experience emotions in this learning environment. Based on Pekrun’s (2006) control-value theory of emotions, the dual purpose of this study was first to compare synchronous hybrid students who attend online versus on-campus in terms of control, value, emotions and perceived success and second to compare students’ degree of emotional activation in the domains of programme achievement and technology use. Survey data from 101 graduate business students revealed that online students reported significantly higher levels of technology-related anger, anxiety and helplessness. Furthermore, in compar- ison to their on-campus counterparts, online students more clearly separated their emotions in terms of programme achievement and technology use. Emotions related significantly to students’ perceived success for both programme achieve- ment and technology use, and mediated the effects of control and value appraisals on perceived success
Using ocean-glint scattered sunlight as a diagnostic tool for satellite remote sensing of greenhouse gases
International audienceSpectroscopic measurements of sunlight backscattered by the Earth's surface is a technique widely used for remote sensing of atmospheric constituent concentrations from space. Thereby, remote sensing of greenhouse gases poses particularly challenging accuracy requirements for instrumentation and retrieval algorithms which, in general, suffer from various error sources. Here, we investigate a method that helps disentangle sources of error for observations of sunlight backscattered from the glint spot on the ocean surface. The method exploits the backscattering characteristics of the ocean surface, which is bright for glint geometry but dark for off-glint angles. This property allows for identifying a set of clean scenes where light scattering due to particles in the atmosphere is negligible such that uncertain knowledge of the lightpath can be excluded as a source of error. We apply the method to more than 3 yr of ocean-glint measurements by the Thermal And Near infrared Sensor for carbon Observation (TANSO) Fourier Transform Spectrometer (FTS) onboard the Greenhouse Gases Observing Satellite (GOSAT), which aims at measuring carbon dioxide (CO2) and methane (CH4) concentrations. The proposed method is able to clearly monitor recent improvements in the instrument calibration of the oxygen (O2) A-band channel and suggests some residual uncertainty in our knowledge about the instrument. We further assess the consistency of CO2 retrievals from several absorption bands between 6400 cm-1(1565 nm) and 4800 cm-1(2100 nm) and find that the absorption bands commonly used for monitoring of CO2 dry air mole fractions from GOSAT allow for consistency better than 1.5 ppm. Usage of other bands reveals significant inconsistency among retrieved CO2 concentrations pointing at inconsistency of spectroscopic parameters. © 2013 Author(s)
Új módszertani lehetőségek és ezek alkalmazása a hormonális rendszer daganatainak genetikai kivizsgálásában
The technical developments leading to revolution in clinical genetic testing offer new approaches for patients with cancer. From one mutation or one gene approach the scale of genetic testing moved to whole exome or whole genome scale. It is well known that many tumours are genetically determined ans they are part of familial tumour syndromes. In addition, some mutations indicate specific molecular targeted therapies. Although sampling and sample preparation are different for testing germline and somatic mutations, the technical background of the analysis is the same. The aim of clinical genetic testing is to identify patients who are carriers of disease-causing mutations or to test tumour tissue for the presence of genetic alterations which may be targets for therapeutic approaches. In this review the authors summarize novel possibilities offered by next-generation sequencing in clinical genetic testing of patients with endocrine tumours. In addition, the authors review recent guidelines on technical and ethical issues related to these novel methods. Orv. Hetil., 2015, 156(51), 2063-2069
Induced Magnetic Ordering by Proton Irradiation in Graphite
We provide evidence that proton irradiation of energy 2.25 MeV on
highly-oriented pyrolytic graphite samples triggers ferro- or ferrimagnetism.
Measurements performed with a superconducting quantum interferometer device
(SQUID) and magnetic force microscopy (MFM) reveal that the magnetic ordering
is stable at room temperature.Comment: 3 Figure
- …