4 research outputs found

    The observed polarization direction depending on geometrical and kinematic parameters of relativistic jets

    Full text link
    The study of the polarization direction is crucial in the issue of restoring the spatial structure of the magnetic field in the active galaxy parsec-scale jets. But, due to relativistic effects, the magnetic field projected onto the celestial sphere in the source reference frame cannot be assumed to be orthogonal to the observed direction of the electric vector in the wave. Moreover, the local axis of the jet component may not coincide with its motion direction, which affects the observed polarization direction. In this article, we analyze the transverse to jet distributions of the electric vector in the wave, obtained as a result of modeling with different jet kinematic and geometrical parameters for a helical magnetic field with a different twist angle and for a toroidal magnetic field in the center, surrounded by a varying thickness sheath, penetrated by a poloidal field. We obtained: 1) the shape of the electric vector transverse distribution depends in a complex way on the angles of the jet axis and the velocity vector with the line of sight; 2) ambiguity in determining the twist direction of the helical magnetic field under using only the distributions of the electric vector in the wave; 3) both considered magnetic field topologies can reproduce both the ``spine-sheath'' polarization structure and individual bright details with the longitudinal to the jet axis polarization direction.Comment: Accepted to Astronomy Reports. 30 figures, 1 tabl

    Configuration of the global magnetic field in AGN parsec-scale jets

    Full text link
    The magnetic field plays a significant role in the phenomenon of highly collimated jets of active galactic nuclei (AGN). Relativistic effects prevent the direct reconstruction of the magnetic field direction as transverse to electric vectors on radio maps. We determined the topology of the \textbf{B}-field by modeling the transverse distributions of the total and linearly polarized intensity, polarization degree, and deviation of the polarization direction from the local jet axis and by further comparison with observational data. We consider (i) a helical field with a different twist angle; (ii) a toroidal field on the jet axis surrounded by a sheath with a longitudinal field. In the latter scenario, we consider different sheath thickness relative to the spine. We assumed the sheath velocity is equal to or less than that of the spine. The relativistic effects have been considered for a general case, under which the axis and velocity vector of the jet and radial directions do not coincide. Our simulations reproduce the main features of the observed transverse profiles of polarization characteristics in parsec-scale AGN jets. The model transverse distribution shapes of the polarization properties are found to be strongly influenced by kinematic and geometric parameters of an outflow. We demonstrated it for three AGNs having different but typical polarization patterns revealed on radio maps. For each of these objects, we identified the model parameters, which provide a qualitative correspondence of theoretical profiles with those obtained from observations, indicating that the \textbf{B}-field is strongly ordered on parsec scales.Comment: 16 pages, 11 figures, 2 table
    corecore