942 research outputs found

    Land-surface modelling in hydrological perspective – a review

    Get PDF
    The purpose of this paper is to provide a review of the different types of energy-based land-surface models (LSMs) and discuss some of the new possibilities that will arise when energy-based LSMs are combined with distributed hydrological modelling. We choose to focus on energy-based approaches, because in comparison to the traditional potential evapotranspiration models, these approaches allow for a stronger link to remote sensing and atmospheric modelling. New opportunities for evaluation of distributed land-surface models through application of remote sensing are discussed in detail, and the difficulties inherent in various evaluation procedures are presented. Finally, the dynamic coupling of hydrological and atmospheric models is explored, and the perspectives of such efforts are discussed

    Limits to Sympathetic Evaporative Cooling of a Two-Component Fermi Gas

    Full text link
    We find a limit cycle in a quasi-equilibrium model of evaporative cooling of a two-component fermion gas. The existence of such a limit cycle represents an obstruction to reaching the quantum ground state evaporatively. We show that evaporatively the \beta\mu ~ 1. We speculate that one may be able to cool an atomic fermi gas further by photoassociating dimers near the bottom of the fermi sea.Comment: Submitted to Phys. Rev

    Mesoscopic Fermi gas in a harmonic trap

    Full text link
    We study the thermodynamical properties of a mesoscopic Fermi gas in view of recent possibilities to trap ultracold atoms in a harmonic potential. We focus on the effects of shell closure for finite small atom numbers. The dependence of the chemical potential, the specific heat and the density distribution on particle number and temperature is obtained. Isotropic and anisotropic traps are compared. Possibilities of experimental observations are discussed.Comment: 8 pages, 9 eps-figures included, Revtex, submitted to Phys. Rev. A, minor changes to figures and captions, corrected typo

    Ground-State Properties of a Rotating Bose-Einstein Condensate with Attractive Interaction

    Full text link
    The ground state of a rotating Bose-Einstein condensate with attractive interaction in a quasi-one-dimensional torus is studied in terms of the ratio γ\gamma of the mean-field interaction energy per particle to the single-particle energy-level spacing. The plateaus of quantized circulation are found to appear if and only if γ<1\gamma<1 with the lengths of the plateaus reduced due to hybridization of the condensate over different angular-momentum states.Comment: 4 pages, 2 figures, Accepted for publication in Physical Reveiw Letter

    Optical linewidth of a low density Fermi-Dirac gas

    Full text link
    We study propagation of light in a Fermi-Dirac gas at zero temperature. We analytically obtain the leading density correction to the optical linewidth. This correction is a direct consequence of the quantum statistical correlations of atomic positions that modify the optical interactions between the atoms at small interatomic separations. The gas exhibits a dramatic line narrowing already at very low densities.Comment: 4 pages, 2 figure

    Coherent Dynamics of Vortex Formation in Trapped Bose-Einstein Condensates

    Full text link
    Simulations of a rotationally stirred condensate show that a regime of simple behaviour occurs in which a single vortex cycles in and out of the condensate. We present a simple quantitative model of this behaviour, which accurately describes the full vortex dynamics, including a critical angular speed of stirring for vortex formation. A method for experimentally preparing a condensate in a central vortex state is suggested.Comment: 4 pages, 4 figures, REVTeX 3.1; Submitted to Physical Review Letters (5 February 1999); See http://www.physics.otago.ac.nz/research/bec/vortex for MPEG movies and further information; Accepted for Physical Review Letters (24 June 1999); Changes: updated Figs 1 and 2 (new style), minor typos fixed, more discussion at en

    Free expansion of lowest Landau level states of trapped atoms: a wavefunction microscope

    Full text link
    We show that for any lowest-Landau-level state of a trapped, rotating, interacting Bose gas, the particle distribution in coordinate space in a free expansion (time of flight) experiment is related to that in the trap at the time it is turned off by a simple rescaling and rotation. When the lowest-Landau-level approximation is valid, interactions can be neglected during the expansion, even when they play an essential role in the ground state when the trap is present. The correlations in the density in a single snapshot can be used to obtain information about the fluid, such as whether a transition to a quantum Hall state has occurred.Comment: 5 pages, no figures. v2: discussion of neglect of interactions during expansion improved, refs adde

    Spin Excitations in a Fermi Gas of Atoms

    Full text link
    We have experimentally investigated a spin excitation in a quantum degenerate Fermi gas of atoms. In the hydrodynamic regime the damping time of the collective excitation is used to probe the quantum behavior of the gas. At temperatures below the Fermi temperature we measure up to a factor of 2 reduction in the excitation damping time. In addition we observe a strong excitation energy dependence for this quantum statistical effect.Comment: 4 pages, 3 figure

    Luttinger model approach to interacting one-dimensional fermions in a harmonic trap

    Full text link
    A model of interacting one--dimensional fermions confined to a harmonic trap is proposed. The model is treated analytically to all orders of the coupling constant by a method analogous to that used for the Luttinger model. As a first application, the particle density is evaluated and the behavior of Friedel oscillations under the influence of interactions is studied. It is found that attractive interactions tend to suppress the Friedel oscillations while strong repulsive interactions enhance the Friedel oscillations significantly. The momentum distribution function and the relation of the model interaction to realistic pair interactions are also discussed.Comment: 12 pages latex, 1 eps-figure in 1 tar file, extended Appendix, added and corrected references, new eq. (53), corrected typos, accepted for PR

    Manipulating the critical temperature for the superfluid phase transition in trapped atomic Fermi gases

    Full text link
    We examine the effect of the trapping potential on the critical temperature, TCT_C, for the BCS transition to a superfluid state in trapped atomic gases of fermions. TCT_C for an arbitrary power law trap is calculated in the Thomas-Fermi approximation. For anharmonic traps, TCT_C can be increased by several orders of magnitude in comparison to a harmonic trap. Our theoretical results indicate that, in practice, one could manipulate the critical temperature for the BCS phase transition by shaping the traps confining the atomic Fermi gases.Comment: 4 page
    • …
    corecore