9 research outputs found

    Collisionless and hydrodynamic excitations of trapped boson-fermion mixtures

    Full text link
    Within a scaling ansatz formalism plus Thomas-Fermi approximation, we investigate the collective excitations of a harmonically trapped boson-fermion mixture in the collisionless and hydrodynamic limit at low temperature. Both the monopole and quadrupole modes are considered in the presence of spherical as well as cylindrically symmetric traps. In the spherical traps, the frequency of monopole mode coincides in the collisionless and hydrodynamic regime, suggesting that it might be undamped in all collisional regimes. In contrast, for the quadrupole mode, the frequency differs largely in these two limits. In particular, we find that in the hydrodynamic regime the quadrupole oscillations with equal bosonic and fermionic amplitudes generate an exact eigenstate of the system, regardless of the boson-fermion interaction. This resembles the Kohn mode for the dipole excitation. We discuss in some detail the behavior of monopole and quadrupole modes as a function of boson-fermion coupling at different boson-boson interaction strength. Analytic solutions valid at weak and medium fermion-boson coupling are also derived and discussed.Comment: 29 pages + 7 figures, resubmitted to Physical Review

    Anion complexation via C–HX interactions using a palladacyclic receptor

    No full text
    A novel organometallic receptor binds anions in solution and in the solid state, with complexes stabilised through a series of C–HX interactions, as evidenced by 1H NMR spectroscopy, X-ray crystallography and computational models

    2 Hydrogen-1 NMR. References

    No full text

    Lasers

    No full text
    corecore