34 research outputs found

    Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits

    Get PDF
    On-chip nonlinear optics is a thriving research field, which creates transformative opportunities for manipulating classical or quantum signals in small-footprint integrated devices. Since the length scales are short, nonlinear interactions need to be enhanced by exploiting materials with large nonlinearity in combination with high-Q resonators or slow-light structures. This, however, often results in simultaneous enhancement of competing nonlinear processes, which limit the efficiency and can cause signal distortion. Here, we exploit the frequency dependence of the optical density-of-states near the edge of a photonic bandgap to selectively enhance or inhibit nonlinear interactions on a chip. We demonstrate this concept for one of the strongest nonlinear effects, stimulated Brillouin scattering using a narrow-band one-dimensional photonic bandgap structure: a Bragg grating. The stimulated Brillouin scattering enhancement enables the generation of a 15-line Brillouin frequency comb. In the inhibition case, we achieve stimulated Brillouin scattering free operation at a power level twice the threshold

    Multi-wavelength gratings formed via cascaded stimulated Brillouin scattering

    No full text
    We present the experimental observation of multi-wavelength fiber Bragg gratings in As2Se3 fiber. The gratings are internally written via two-photon absorption of 1550 nm pump light and its first and second order Stokes waves generated by cascaded stimulated Brillouin scattering (SBS). We demonstrate a parameter regime that allows for 4 dB grating enhancement by suppression of SBS

    Adipose tissue at entheses: the rheumatological implications of its distribution. A potential site of pain and stress dissipation?

    No full text
    Objectives: To describe the distribution of adipose tissue within and adjacent to entheses in order to assess its functional significance at attachment sites. Methods: Entheses were removed from 29 different sites in the limbs of formalin fixed, elderly, dissecting room cadavers and the samples prepared for paraffin and/or methylmethacrylate histology. Entheses from four young volunteers with no history of significant musculoskeletal injury were examined by magnetic resonance imaging using T(1) weighted sequences. Results: Adipose tissue was present at several different sites at numerous entheses. Many tendons/ligaments lay on a bed of well vascularised, highly innervated, "insertional angle fat". Endotenon fat was striking between fascicles, where entheses flared out at their attachments. It was also characteristic of the epitenon, where it occurred in conjunction with lamellated and Pacinian corpuscles. Fat filled, meniscoid folds often protruded into joint cavities, immediately adjacent to attachment sites. Conclusion: Adipose tissue is a common feature of normal entheses and should not be regarded as a sign of degeneration. It contributes to the increase in surface area of attachment sites, promotes movement between tendon/ligament and bone, and forms part of an enthesis organ that dissipates stress. The presence of numerous nerve endings in fat at attachment sites suggests that it has a mechanosensory role and this could account for the rich innervation of many entheses. Because damage to fat is known to lead to considerable joint pain, our findings may be important for understanding the site of pain in enthesopathies

    Advances in chip-based Brillouin sources

    No full text
    We present single- and multifrequency Brillouin lasers based on chalcogenide photonic chip. The high Brillouin gain of chalcogenide and the small waveguide cross-section make it possible to achieve lasing in a few centimeter long waveguide

    Organ manifestations of COVID-19: what have we learned so far (not only) from autopsies?

    Get PDF
    Jonigk D, Werlein C, Acker T, et al. Organ manifestations of COVID-19: what have we learned so far (not only) from autopsies? Virchows Archiv . 2022.The use of autopsies in medicine has been declining. The COVID-19 pandemic has documented and rejuvenated the importance of autopsies as a tool of modern medicine. In this review, we discuss the various autopsy techniques, the applicability of modern analytical methods to understand the pathophysiology of COVID-19, the major pathological organ findings, limitations or current studies, and open questions. This article summarizes published literature and the consented experience of the nationwide network of clinical, neuro-, and forensic pathologists from 27 German autopsy centers with more than 1200 COVID-19 autopsies. The autopsy tissues revealed that SARS-CoV-2 can be found in virtually all human organs and tissues, and the majority of cells. Autopsies have revealed the organ and tissue tropism of SARS-CoV-2, and the morphological features of COVID-19. This is characterized by diffuse alveolar damage, combined with angiocentric disease, which in turn is characterized by endothelial dysfunction, vascular inflammation, (micro-) thrombosis, vasoconstriction, and intussusceptive angiogenesis. These findings explained the increased pulmonary resistance in COVID-19 and supported the recommendations for antithrombotic treatment in COVID-19. In contrast, in extra-respiratory organs, pathological changes are often nonspecific and unclear to which extent these changes are due to direct infection vs. indirect/secondary mechanisms of organ injury, or a combination thereof. Ongoing research using autopsies aims at answering questions on disease mechanisms, e.g., focusing on variants of concern, and future challenges, such as post-COVID conditions. Autopsies are an invaluable tool in medicine and national and international interdisciplinary collaborative autopsy-based research initiatives are essential. © 2022. The Author(s)
    corecore