6,749 research outputs found

    Quadrupole moments of rotating neutron stars

    Full text link
    Numerical models of rotating neutron stars are constructed for four equations of state using the computer code RNS written by Stergioulas. For five selected values of the star's gravitational mass (in the interval between 1.0 and 1.8 solar masses) and for each equation of state, the star's angular momentum is varied from J=0 to the Keplerian limit J=J_{max}. For each neutron-star configuration we compute Q, the quadrupole moment of the mass distribution. We show that for given values of M and J, |Q| increases with the stiffness of the equation of state. For fixed mass and equation of state, the dependence on J is well reproduced with a simple quadratic fit, Q \simeq - aJ^2/M c^2, where c is the speed of light, and a is a parameter of order unity depending on the mass and the equation of state.Comment: ReVTeX, 7 pages, 5 figures, additional material, and references adde

    Innermost stable circular orbits around relativistic rotating stars

    Get PDF
    We investigate the innermost stable circular orbit (ISCO) of a test particle moving on the equatorial plane around rotating relativistic stars such as neutron stars. First, we derive approximate analytic formulas for the angular velocity and circumferential radius at the ISCO making use of an approximate relativistic solution which is characterized by arbitrary mass, spin, mass quadrupole, current octapole and mass 242^4-pole moments. Then, we show that the analytic formulas are accurate enough by comparing them with numerical results, which are obtained by analyzing the vacuum exterior around numerically computed geometries for rotating stars of polytropic equation of state. We demonstrate that contribution of mass quadrupole moment for determining the angular velocity and, in particular, the circumferential radius at the ISCO around a rapidly rotating star is as important as that of spin.Comment: 12 pages, 2 figures, accepted for publication in Phys. Rev.

    Photon Structure and Quantum Fluctuation

    Get PDF
    Photon structure derives from quantum fluctuation in quantum field theory to fermion and anti-fermion, and has been an experimentally established feature of electrodynamics since the discovery of the positron. In hadronic physics, the observation of factorisable photon structure is similarly a fundamental test of the quantum field theory Quantum Chromodynamics (QCD). An overview of measurements of hadronic photon structure in e+e- and ep interactions is presented, and comparison made with theoretical expectation, drawing on the essential features of photon fluctuation into quark and anti-quark in QCD.Comment: 29 pages, 15 figures, to appear in Philosophical Transactions of the Royal Society of London (Series A: Mathematical, Physical and Engineering Sciences

    Unusual Burst Emission from the New Soft Gamma Repeater SGR1627-41

    Get PDF
    In June-July,1998 the Konus-Wind burst spectrometer observed a series of bursts from the new soft gamma repeater SGR1627-41. Time histories and energy spectra of the bursts have been studied, revealing fluences and peak fluxes in the ranges of 3x10^{-7} - 7.5x10^{-6} erg cm^{-2} and 10^{-5} - 10^{-4}erg cm^{-2}/s respectively. One event, 18 June 6153.5sUT stands out dramatically from this series. Its fluence is ~7x10^{-4} erg cm^{-2} and peak flux ~2x10^{-2} erg cm^{-2}/s. These values from a source at a distance of 5.8 kpc yield an energy output of ~3x10^{42}erg and maximum luminosity of ~8x10^{43} erg/s, similar to the values for the famous March 5, 1979 and August27,1998 events. In terms of energy, this event is another giant outburst seen in a third SGR! However, this very energetic burst differs significantly from the other giant outbursts. It exhibits no separate initial pulse with a fast rise time, no extended tail, and no pulsations. It is rather similar to ordinary repeated bursts but is a few hundred times stronger in intensity. According to the magnetar model by Thompson and Duncan (1995) such a burst may be initiated by a strong starquake when a crust fracture propagates over the whole surface of a neutron star.Comment: 7 pages, 5 figures. To be appeared in ApJ

    Longitudinal Emittance Blow-Up in the LHC

    Get PDF
    The LHC relies on Landau damping for longitudinal stability. To avoid decreasing the stability margin at high energy, the longitudinal emittance must be continuously increased during the acceleration ramp. Longitudinal blow-up provides the required emittance growth. The method was implemented through the summer of 2010. We inject band-limited RF phase-noise in the main accelerating cavities during the whole ramp of about 11 minutes. Synchrotron frequencies change along the energy ramp, but the digitally created noise tracks the frequency change. The position of the noise-band, relative to the nominal synchrotron frequency, and the bandwidth of the spectrum are set by pre-defined constants, making the diffusion stop at the edges of the demanded distribution. The noise amplitude is controlled by feedback using the measurement of the average bunch length. This algorithm reproducibly achieves the programmed bunch length of about 1.2 ns (4 ) at flat top with low bunch-to-bunch scatter and provides a stable beam for physics coast

    Suggestions for a way forward to further evaluate ageing error for Southern Hemisphere minke whales.

    Get PDF
    Paper SC/59/O8 provides a very helpful perspective and suggestions to help clarify the use of Antarctic minke whale age data in the commercial and research permit periods. On the basis of the paper, some areas for further work suggest themselves and these are outlined below. We recognise that these involve, in some cases, quite substantial additional work but believe that this will assist considerably in addressing the issues raised inter alia at the JARPA review meeting as well as during past IA sub-committee meetings and allow the valuable analyses involving both commercial and scientific permit data to be undertaken. The second experiment is designed to confirm the proposal in SC/59/O8 to limit analyses to using only data for animals aged six years and over

    Leg disorders in broiler chickens : prevalence, risk factors and prevention

    Get PDF
    Broiler (meat) chickens have been subjected to intense genetic selection. In the past 50 years, broiler growth rates have increased by over 300% (from 25 g per day to 100 g per day). There is growing societal concern that many broiler chickens have impaired locomotion or are even unable to walk. Here we present the results of a comprehensive survey of commercial flocks which quantifies the risk factors for poor locomotion in broiler chickens.We assessed the walking ability of 51,000 birds, representing 4.8 million birds within 176 flocks.We also obtained information on approximately 150 different management factors associated with each flock. At a mean age of 40 days, over 27.6% of birds in our study showed poor locomotion and 3.3% were almost unable to walk. The high prevalence of poor locomotion occurred despite culling policies designed to remove severely lame birds from flocks. We show that the primary risk factors associated with impaired locomotion and poor leg health are those specifically associated with rate of growth. Factors significantly associated with high gait score included the age of the bird (older birds), visit (second visit to same flock), bird genotype, not feeding whole wheat, a shorter dark period during the day, higher stocking density at the time of assessment, no use of antibiotic, and the use of intact feed pellets. The welfare implications are profound. Worldwide approximately 261010 broilers are reared within similar husbandry systems.We identify a range of management factors that could be altered to reduce leg health problems, but implementation of these changes would be likely to reduce growth rate and production. A debate on the sustainability of current practice in the production of this important food source is required

    LOTIS Search for Early Time Optical Afterglows: GRB 971227

    Get PDF
    We report on the very early time search for an optical afterglow from GRB 971227 with the Livermore Optical Transient Imaging System (LOTIS). LOTIS began imaging the `Original' BATSE error box of GRB 971227 approximately 14 s after the onset of gamma-ray emission. Continuous monitoring of the position throughout the evening yielded a total of 499 images (10 s integration). Analysis of these images revealed no steady optical afterglow brighter than R=12.3 +- 0.2 in any single image. Coaddition of different combinations of the LOTIS images also failed to uncover transient optical emission. In particular, assuming a constant early time flux, no optical afterglow brighter than R=14.2 +- 0.2 was present within the first 1200 s and no optical afterglow brighter than R=15.0 +- 0.2 was present in the first 6.0 h. Follow up observations by other groups revealed a likely X-ray afterglow and a possible optical afterglow. Although subsequent deeper observations could not confirm a fading source, we show that these transients are not inconsistent with our present knowledge of the characteristics of GRB afterglows. We also demonstrate that with the upgraded thermoelectrically cooled CCDs, LOTIS is capable of either detecting very early time optical afterglow or placing stringent constraints on the relationship between the gamma-ray emission and the longer wavelength afterglow in relativistic blast wave models.Comment: 17 pages, 3 eps figures, revisions based on reviewers comment
    • …
    corecore