49 research outputs found

    Structural and Biophysical Characterization of Staphylococcus Aureus SaMazF Shows Conservation of Functional Dynamics

    Get PDF
    The Staphylococcus aureus genome contains three toxin-antitoxin modules, including one mazEF module, SamazEF. Using an on-column separation protocol we are able to obtain large amounts of wild-type SaMazF toxin. The protein is well-folded and highly resistant against thermal unfolding but aggregates at elevated temperatures. Crystallographic and nuclear magnetic resonance (NMR) solution studies show a well-defined dimer. Differences in structure and dynamics between the X-ray and NMR structural ensembles are found in three loop regions, two of which undergo motions that are of functional relevance. The same segments also show functionally relevant dynamics in the distantly related CcdB family despite divergence of function. NMR chemical shift mapping and analysis of residue conservation in the MazF family suggests a conserved mode for the inhibition of MazF by MazE

    Interplay between metal binding and cis/trans isomerization in legume lectins: structural and thermodynamic study of P. angolensis lectin.

    No full text
    The interplay between metal binding, carbohydrate binding activity, stability and structure of the lectin from Pterocarpus angolensis was investigated. Removal of the metals leads to a more flexible form of the protein with significantly less conformational stability. Crystal structures of this metal-free form show significant structural rearrangements, although some structural features that allow the binding of sugars are retained. We propose that substitution of an asparagine residue at the start of the C-terminal beta-strand of the legume lectin monomer hinders the trans-isomerization of the cis-peptide bond upon demetallization and constitutes an intramolecular switch governing the isomer state of the non-proline bond and ultimately the lectin phenotype.info:eu-repo/semantics/publishe

    Crystallization and preliminary X-ray analysis of the Man(α1-2)Man-specific lectin from Bowringia mildbraedii in complex with its carbohydrate ligand

    No full text
    The lectin from the Nigerian legume B. mildbraedii was crystallized in complex with Man(α1-2)Man and data were collected to a resolution of 1.90 Å using synchrotron radiation

    Structural basis of carbohydrate recognition by a Man(alpha1-2)Man-specific lectin from Bowringia milbraedii.

    No full text
    The crystal structure of the seed lectin from the tropical legume Bowringia milbraedii was determined in complex with the disaccharide ligand Man(alpha1-2)Man. In solution, the protein exhibits a dynamic dimer-tetramer equilibrium, consistent with the concanavalin A-type tetramer observed in the crystal. Contacts between the tetramers are mediated almost exclusively through the carbohydrate ligand, resulting in a crystal lattice virtually identical to that of the concanavalin-A:Man(alpha1-2)Man complex, even though both proteins have less than 50% sequence identity. The disaccharide binds exclusively in a "downstream" binding mode, with the non-reducing mannose occupying the monosaccharide-binding site. The reducing mannose is bound in a predominantly polar subsite involving Tyr131, Gln218, and Tyr219.info:eu-repo/semantics/publishe

    How a Plant Lectin Recognizes High Mannose Oligosaccharides1[C][OA]

    No full text
    The crystal structure of Pterocarpus angolensis seed lectin is presented in complex with a series of high mannose (Man) oligosaccharides ranging from Man-5 to Man-9. Despite that several of the nine Man residues of Man-9 have the potential to bind in the monosaccharide-binding site, all oligomannoses are bound in the same unique way, employing the tetrasaccharide sequence Manα(1–2)Manα(1–6)[Manα(1–3)]Manα(1–. Isothermal titration calorimetry titration experiments using Man-5, Man-9, and the Man-9-containing glycoprotein soybean (Glycine max) agglutinin as ligands confirm the monovalence of Man-9 and show a 4-times higher affinity for Man-9 when it is presented to P. angolensis seed lectin in a glycoprotein context

    (1)H, (13)C and (15)N backbone and side-chain chemical shift assignment of the Fyn SH2 domain and its complex with a phosphotyrosine peptide.

    No full text
    SH2 domains are interaction modules uniquely dedicated to recognize phosphotyrosine sites, playing a central role in for instance the activation of tyrosine kinases or phosphatases. Here we report the (1)H, (15)N and (13)C backbone and side-chain chemical shift assignments of the SH2 domain of the human protein tyrosine kinase Fyn, both in its free state and bound to a high-affinity phosphotyrosine peptide corresponding to a specific sequence in the hamster middle-T antigen. The BMRB accession numbers are 17,368 and 17,369, respectively.JOURNAL ARTICLESCOPUS: ar.jinfo:eu-repo/semantics/publishe

    The plasticity of the β-trefoil fold constitutes an evolutionary platform for protease inhibition.

    No full text
    Proteases carry out a number of crucial functions inside and outside the cell. To protect the cells against the potentially lethal activities of these enzymes, specific inhibitors are produced to tightly regulate the protease activity. Independent reports suggest that the Kunitz-soybean trypsin inhibitor (STI) family has the potential to inhibit proteases with different specificities. In this study, we use a combination of biophysical methods to define the structural basis of the interaction of papaya protease inhibitor (PPI) with serine proteases. We show that PPI is a multiple-headed inhibitor; a single PPI molecule can bind two trypsin units at the same time. Based on sequence and structural analysis, we hypothesize that the inherent plasticity of the β-trefoil fold is paramount in the functional evolution of this family toward multiple protease inhibition.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore