53 research outputs found
Recommended from our members
The heterogeneity of clinical practice patterns among an international cohort of pulmonary arterial hypertension experts
Abstract The extent to which pulmonary arterial hypertension (PAH) experts share common practice patterns that are in alignment with published expert consensus recommendations is unknown. Our objective was to characterize the clinical management strategies used by an international cohort of self-identified PAH experts. A 32-item questionnaire composed mainly of rank order or Likert scale questions was distributed via the Internet (August 5, 2013, through January 20, 2014) to four international pulmonary vascular disease organizations. The survey respondents (N = 105) were field experts reporting 11.6 Ā± 8.7 years of PAH experience. Likert scale responses (1 = disagree, 7 = agree) were 3.0ā5.0, indicating a disparity in opinions, for 78% of questions. Respondent (dis)agreement scores were 4.4 Ā± 2.2 for use of expert recommendations to determine catheterization timing in PAH. For PAH patients without cardiogenic shock or known vasoreactivity status, the most and least preferred first-line therapies (1 = most preferred, 5 = least preferred) were phosphodiesterase type 5 inhibitors (PDE-Vi) and subcutaneous prostacyclin analogues, respectively (1.4 Ā± 0.8 vs. 4.0 Ā± 1.1; P < 0.05). Compared with US-practicing clinicians (N = 46), non-US-practicing clinicians (N = 57) favored collaboration between cardiology and pulmonary medicine for clinical decision making (1 = disagree, 7 = agree; 3.1 Ā± 2.2 vs. 4.8 Ā± 2.2; P < 0.0001) and PDE-Vi (6.5% vs. 22.4%) as first-line therapy for PAH patients with cardiogenic shock but were less likely to perform vasoreactivity testing in patients with lung diseaseāinduced pulmonary hypertension (4.3 Ā± 2.1 vs. 2.2 Ā± 1.6; P < 0.0001). In conclusion, practice patterns among PAH experts diverge from consensus recommendations and differ by practice location, suggesting that opportunity may exist to improve care quality for this highly morbid cardiopulmonary disease
A comprehensive review: The evolution of animal models in pulmonary hypertension research; are we there yet?
Pulmonary hypertension (PH) is a disorder that develops as a result of remodeling of the pulmonary vasculature and is characterized by narrowing/obliteration of small pulmonary arteries, leading to increased mean pulmonary artery pressure and pulmonary vascular resistance. Subsequently, PH increases the right ventricular afterload, which leads to right ventricular hypertrophy and eventually right ventricular failure. The pathophysiology of PH is not fully elucidated, and current treatments have only a modest impact on patient survival and quality of life. Thus, there is an urgent need for improved treatments or a cure. The use of animal models has contributed extensively to the current understanding of PH pathophysiology and the investigation of experimental treatments. However, PH in current animal models may not fully represent current clinical observations. For example, PH in animal models appears to be curable with many therapeutic interventions, and the severity of PH in animal models is also believed to correlate poorly with that observed in humans. In this review, we discuss a variety of animal models in PH research, some of their contributions to the field, their shortcomings, and how these have been addressed. We highlight the fact that the constant development and evolution of animal models will help us to more closely model the severity and heterogeneity of PH observed in humans
Enhanced inflammatory cell profiles in schistosomiasis-induced pulmonary vascular remodeling.
Schistosomiasis (bilharzia) is a neglected parasitic disease caused by trematode flatworms of the genus Schistosoma which affects over 240 million people worldwide. It is characterized by the formation of inflammatory granulomas around deposited parasite eggs. Recent studies have revealed that immune and inflammatory responses play a crucial role in pathogenesis of schistosomiasis. The aim of this paper is to systematically evaluate the number and distribution of inflammatory cells in S. mansoni-infected mice at different doses and time points. Immunohistochemistry was performed on lung and liver tissue sections from Schistosoma-infected mice and uninfected healthy controls. Positively stained cells in whole-lung/liver tissue sections, surrounding the eggs, and in the different compartments of the tissues, were counted. We found a significant increase in the number of mast cells (toluidine blue(+)), CD3(+) cells, CD14(+) cells, CD68(+) cells, and CD15(+) cells in Schistosoma-infected tissues compared with untreated healthy controls (P???0.05 for all). Our findings revealed altered and enhanced immune cell infiltration in schistosomiasis. We suggest that these cells may contribute to the pathophysiology of Schistosoma resulting in pulmonary vascular remodeling
Gut microbiota crosstalk mechanisms are key in pulmonary hypertension: The involvement of melatonin is instrumental too
The microbiota refers to a plethora of microorganisms with a gene pool of approximately three million, which inhabits the human gastrointestinal tract or gut. The latter, not only promotes the transport of nutrients, ions, and fluids from the lumen to the internal environment but is linked with the development of diseases including coronary artery disease, heart failure, and lung diseases. The exact mechanism of how the microbiota achieves crosstalk between itself and distant organs/tissues is not clear, but factors released to other organs may play a role, like inflammatory and genetic factors, and now we highlight melatonin as a novel mediator of the gut-lung crosstalk. Melatonin is present in high concentrations in the gut and the lung and has recently been linked to the pathogenesis of pulmonary hypertension (PH). In this comprehensive review of the literature, we suggest that melatonin is an important link between the gut microbiota and the development of PH (where suppressed melatonin-crosstalk between the gut and lungs could promote the development of PH). More studies are needed to investigate the link between the gut microbiota, melatonin and PH. Studies could also investigate whether microbiota genes play a role in the epigenetic aspects of PH. This is relevant because, for example, dysbiosis (caused by epigenetic factors) could reduce melatonin signaling between the gut and lungs, reduce subcellular melatonin concentrations in the gut/lungs, or reduce melatonin serum levels secondary to epigenetic factors. This area of research is largely unexplored and further studies are warranted
HIV transgene expression impairs K+ channel function in the pulmonary vasculature
Human immunodeficiency virus (HIV) infection is an established risk factor for pulmonary arterial hypertension (PAH), however the pathogenesis of HIV-related PAH remains unclear. Since K+ channel dysfunction is a common marker in most forms of PAH, our aim was to analyse if the expression of HIV proteins is associated with impairment of K+ channel function in the pulmonary vascular bed. HIV transgenic mice (Tg26) expressing seven of the nine HIV viral proteins and wild type (Wt) mice were used. Hemodynamic assessment was performed by echocardiography and catheterization. Vascular reactivity was studied in endothelium-intact pulmonary arteries (PA). K+ currents were recorded in freshly isolated PA smooth muscle cells (PASMC) using the patch-clamp technique. Gene expression was assessed using RT-PCR. PASMC from Tg26 mice had reduced K+ currents and were more depolarized that those from Wt. While Kv1.5 currents were preserved, pH-sensitive non-inactivating background currents (IKN) were nearly abolished in PASMC from Tg26 mice. Tg26 mice had reduced lung expression of Kv7.1 and Kv7.4 channels and decreased responses to the Kv7.1 channel activator L634,373 assessed by vascular reactivity and patch-clamp experimental approaches. While we found pulmonary vascular remodelling and endothelial dysfunction in Tg26 mice, this was not accompanied by changes in hemodynamic parameters. In conclusion, the expression of HIV proteins in vivo impairs pH-sensitive IKN and Kv7 currents. This negative impact of HIV proteins in K+ channels, was not sufficient to induce PAH, at least in mice, but may play a permissive or accessory role in the pathophysiology of HIV-associated PAH
Potential long-term effects of SARS-CoV-2 infection on the pulmonary vasculature: Multilayered cross-talks in the setting of coinfections and comorbidities
The Coronavirus Disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and its sublineages pose a new challenge to healthcare systems worldwide due to its ability to efficiently spread in immunized populations and its resistance to currently available therapies. COVID-19, although targeting primarily the respiratory system, is also now well established that later affects every organ in the body. Most importantly, despite the available therapy and vaccine-elicited protection, the long-term consequences of viral infection in breakthrough and asymptomatic individuals are areas of concern. In the past two years, investigators accumulated evidence on how the virus triggers our immune system and the molecular signals involved in the cross-talk between immune cells and structural cells in the pulmonary vasculature to drive pathological lung complications such as endothelial dysfunction and thrombosis. In the review, we emphasize recent updates on the pathophysiological inflammatory and immune responses associated with SARS-CoV-2 infection and their potential long-term consequences that may consequently lead to the development of pulmonary vascular diseases
Cardiopulmonary disease as sequelae of long-term COVID-19: Current perspectives and challenges
COVID-19 infection primarily targets the lungs, which in severe cases progresses to cytokine storm, acute respiratory distress syndrome, multiorgan dysfunction, and shock. Survivors are now presenting evidence of cardiopulmonary sequelae such as persistent right ventricular dysfunction, chronic thrombosis, lung fibrosis, and pulmonary hypertension. This review will summarize the current knowledge on long-term cardiopulmonary sequelae of COVID-19 and provide a framework for approaching the diagnosis and management of these entities. We will also identify research priorities to address areas of uncertainty and improve the quality of care provided to these patients
- ā¦