16 research outputs found

    Bioisosteric substitution of adamantane with bicyclic lipophilic groups improves water solubility of human soluble epoxide hydrolase inhibitors

    No full text
    A series of inhibitors of the soluble epoxide hydrolase (sEH) containing lipophilic groups of natural origin (camphanyl, norcamphanyl, furan-2-yl) were developed. Inhibitory potency ranging from 0.4 nM to 2.16 Î¼M were obtained. While having the same level of inhibitory activity bicyclic ureas are up to 10-fold more soluble than the corresponding ureas containing adamantyl or 4-trifluoromethoxyphenyl substituents. This makes them easier to formulate, more bioavailable and thus more promising as therapeutic sEH inhibitors. Endo/exo-form of compound 2b derived from l-camphor is 14-fold more potent than the corresponding analogue derived from d-camphor (IC50 = 3.7 nM vs. 50.6 nM) indicating enantiomeric preference

    Adamantyl thioureas as soluble epoxide hydrolase inhibitors.

    No full text
    A series of inhibitors of the soluble epoxide hydrolase (sEH) containing one or two thiourea groups has been developed. Inhibition potency of the described compounds ranges from 50 μM to 7.2 nM. 1,7-(Heptamethylene)bis[(adamant-1-yl)thiourea] (6f) was found to be the most potent sEH inhibitor, among the thioureas tested. The inhibitory activity of the thioureas against the human sEH is closer to the value of activity against rat sEH rather than murine sEH. While being less active, thioureas are up to 7-fold more soluble than ureas, which makes them more bioavailable and thus promising as sEH inhibitors

    Symmetric adamantyl-diureas as soluble epoxide hydrolase inhibitors

    No full text
    A series of inhibitors of the soluble epoxide hydrolase (sEH) containing two urea groups has been developed. Inhibition potency of the described compounds ranges from 2.0 μM to 0.4 nM. 1,6-(hexamethylene)bis[(adamant-1-yl)urea] (3b) was found to be a potent slow tight binding inhibitor (IC(50) = 0.5 nM) with a strong binding to sEH (K(i) = 3.1 nM) and a moderately long residence time on the enzyme (k(off) = 1.05×10(−3) s(−1); t(1/2) = 11 min)

    Fluorine and chlorine substituted adamantyl-urea as molecular tools for inhibition of human soluble epoxide hydrolase with picomolar efficacy

    Get PDF
    AbstractSeries of 1,3-disubstituted ureas and diadamantyl disubstituted diureas with fluorinated and chlorinated adamantane residues were shown to inhibit human soluble epoxide hydrolase (sEH) with inhibition potency ranging from 40 pM to 9.2 nM. The measured IC50 values for some molecules were below the accuracy limit of the existing in vitro assays. Such an increase in activity was achieved by minimal structural modifications to the molecules of known inhibitors, including 4-[trans-4-(1-adamantylcarbamoylamino)cyclohexyl]oxybenzoic acid. For the chlorinated homologue of the latter the sharp jump in inhibitory activity can be (according to molecular dynamics data) the result of interactions – Cl-π interaction. Considering the extremely high inhibitory activity, acceptable solubility and partial blockage of metabolically sensitive centres in their structures, some compounds are of interest for further in vivo biotesting
    corecore