39,235 research outputs found
Diversity and Security in UK Electricity Generation: The Influence of Low Carbon Objectives
We explore the relationship between low carbon objectives and the strategic security of electricity in the context of the UK Electricity System. We consider diversity of fuel source mix to represent one dimension of security - robustness against interruptions of any one source - and apply two different diversity indices to the range of electricity system scenarios produced by the UK government and independent researchers. Using data on wind generation we also consider whether a second dimension of security - the reliability of generation availability - is compromised by intermittency of renewable generation. Our results show that low carbon objectives are uniformly associated with greater long-term diversity in UK electricity. We discuss reasons for this result, explore sensitivities, and briefly discuss possible policy instruments associated with diversity and their limitations.Diversity, Security, Low Carbon, Wind Generation, Electricity
Achieving Efficient Strong Scaling with PETSc using Hybrid MPI/OpenMP Optimisation
The increasing number of processing elements and decreas- ing memory to core
ratio in modern high-performance platforms makes efficient strong scaling a key
requirement for numerical algorithms. In order to achieve efficient scalability
on massively parallel systems scientific software must evolve across the entire
stack to exploit the multiple levels of parallelism exposed in modern
architectures. In this paper we demonstrate the use of hybrid MPI/OpenMP
parallelisation to optimise parallel sparse matrix-vector multiplication in
PETSc, a widely used scientific library for the scalable solution of partial
differential equations. Using large matrices generated by Fluidity, an open
source CFD application code which uses PETSc as its linear solver engine, we
evaluate the effect of explicit communication overlap using task-based
parallelism and show how to further improve performance by explicitly load
balancing threads within MPI processes. We demonstrate a significant speedup
over the pure-MPI mode and efficient strong scaling of sparse matrix-vector
multiplication on Fujitsu PRIMEHPC FX10 and Cray XE6 systems
Synchronization and fault-masking in redundant real-time systems
A real time computer may fail because of massive component failures or not responding quickly enough to satisfy real time requirements. An increase in redundancy - a conventional means of improving reliability - can improve the former but can - in some cases - degrade the latter considerably due to the overhead associated with redundancy management, namely the time delay resulting from synchronization and voting/interactive consistency techniques. The implications of synchronization and voting/interactive consistency algorithms in N-modular clusters on reliability are considered. All these studies were carried out in the context of real time applications. As a demonstrative example, we have analyzed results from experiments conducted at the NASA Airlab on the Software Implemented Fault Tolerance (SIFT) computer. This analysis has indeed indicated that in most real time applications, it is better to employ hardware synchronization instead of software synchronization and not allow reconfiguration
Decuplet baryon magnetic moments in a QCD-based quark model beyond quenched approximation
We study the decuplet baryon magnetic moments in a QCD-based quark model
beyond quenched approximation. Our approach for unquenching the theory is based
on the heavy baryon perturbation theory in which the axial couplings for baryon
- meson and the meson-meson-photon couplings from the chiral perturbation
theory are used together with the QM moment couplings. It also involves the
introduction of a form factor characterizing the structure of baryons
considered as composite particles. Using the parameters obtained from fitting
the octet baryon magnetic moments, we predict the decuplet baryon magnetic
moments. The magnetic moment is found to be in good agreement with
experiment: is predicted to be compared to the
experimental result of (2.02 0.05) .Comment: 19 pages, 2 figure
Development and testing of porous ionizer materials, part I Summary report, Feb. 1965 - May 1966
Development and testing of porous tungsten ionizer materials for cesium contact engine
Large magnetoresistance in bcc Co/MgO/Co and FeCo/MgO/FeCo tunneling junctions
By use of first-principles electronic structure calculations, we predict that
the magnetoresistance of the bcc Co(100)/MgO(100)/bcc Co(100) and
FeCo(100)/MgO(100)/FeCo(100) tunneling junctions can be several times larger
than the very large magnetoresistance predicted for the
Fe(100)/MgO(100)/Fe(100) system. The origin of this large magnetoresistance can
be understood using simple physical arguments by considering the electrons at
the Fermi energy travelling perpendicular to the interfaces. For the minority
spins there is no state with symmetry whereas for the majority spins
there is only a state. The state decays much more slowly
than the other states within the MgO barrier. In the absence of scattering
which breaks the conservation of momentum parallel to the interfaces, the
electrons travelling perpendicular to the interfaces undergo total reflection
if the moments of the electrodes are anti-parallel. These arguments apply
equally well to systems with other well ordered tunnel barriers and for which
the most slowly decaying complex energy band in the barrier has
symmetry. Examples include systems with (100) layers constructed from Fe, bcc
Co, or bcc FeCo electrodes and Ge, GaAs, or ZnSe barriers.Comment: 8 figure files in eps forma
Estimation of Parameters in DNA Mixture Analysis
In Cowell et al. (2007), a Bayesian network for analysis of mixed traces of
DNA was presented using gamma distributions for modelling peak sizes in the
electropherogram. It was demonstrated that the analysis was sensitive to the
choice of a variance factor and hence this should be adapted to any new trace
analysed. In the present paper we discuss how the variance parameter can be
estimated by maximum likelihood to achieve this. The unknown proportions of DNA
from each contributor can similarly be estimated by maximum likelihood jointly
with the variance parameter. Furthermore we discuss how to incorporate prior
knowledge about the parameters in a Bayesian analysis. The proposed estimation
methods are illustrated through a few examples of applications for calculating
evidential value in casework and for mixture deconvolution
- …