7 research outputs found

    Jupiter's ammonia distribution derived from VLA maps at 3–37 GHz

    No full text
    We observed Jupiter four times over a full rotation (10 h) with the upgraded Karl G. Jansky Very Large Array (VLA) between December 2013 and December 2014. Preliminary results at 4–17 GHz were presented in de Pater et al. (2016); in the present paper we present the full data set at frequencies between 3 and 37 GHz. Major findings are: i) The radio-hot belt at 8.5–11° N latitude, near the interface between the North Equatorial Belt (NEB) and the Equatorial Zone (EZ) is prominent at all frequencies (3–37 GHz). Its location coincides with the southern latitudes of the NEB (7–17° N). ii) Longitude-smeared maps reveal belts and zones at all frequencies at latitudes ≲ |20°|. At higher latitudes numerous fainter bands are visible at frequencies ≳ 7 GHz. The lowest brightness temperature is in the EZ near a latitude of 4° N, and the NEB has the highest brightness temperature near 11° N. The bright part of the NEB increases in latitudinal extent (spreads towards the north) with deceasing frequency, i.e., with depth into the atmosphere. In longitude-resolved maps, several belts, in particular in the southern hemisphere, are not continuous along the latitude line, but broken into small segments as if caused by an underlying wave. iii) Model fits to longitude-smeared spectra are obtained at each latitude. These show a high NH3 abundance (volume mixing ratio ∼4×10−4) in the deep (P > 8–10 bar) atmosphere, decreasing at higher altitudes due to cloud formation (e.g., in zones), or dynamics in combination with cloud condensation (belts). In the NEB ammonia gas is depleted down to at least the 20 bar level with an abundance of 1.75×10−4. The NH3 abundance at latitudes > |50|° is characterized by a relatively low value (∼1.75×10−4) between ∼ 1 and 10 bar. iv) Using the entire VLA dataset, we confirm that the planet is extremely dynamic in the upper layers of the atmosphere, at P < 2–3 bar, i.e., at the altitudes where clouds form. At most latitudes the relative humidity within and above the NH3 cloud is considerably sub-saturated. v) The radiative transfer models that best fit the longitude-smeared VLA data at 4–25 GHz match the Juno PeriJove 1 microwave data extremely well, i.e., the NH3 abundance is high in the deep atmosphere, and either remains constant or decreases with altitude. vi) Hot spots have a very low, sub-saturated NH3 abundance at the altitudes of the NH3-ice cloud, gradually increasing from an abundance of ∼10−5 at 0.6 bar to the deep atmosphere value (∼4×10−4) at 8 bar. vii) We previously showed the presence of large ammonia plumes, which together with the 5-µm hot spots constitute the equatorially trapped Rossby wave. Observations of these plumes at 12–25 GHz reveal them to be supersaturated at ∼ 0.8–0.5 bar, which implies plumes rise ∼ 10 km above the main clouddeck. Numerous small ammonia plumes are detected at other locations (e.g., at 19° S and interspersed with hot spots). viii) The Great Red Spot (GRS) and Oval BA show relatively low NH3 abundances throughout the troposphere (∼ 1.5–1.8 × 10−4), and the GRS is considerably sub-saturated at higher altitudes.Astrodynamics & Space Mission

    Hydroinformatics education-the Water Informatics in Science and Engineering (WISE) Centre for Doctoral Training

    No full text
    The Water Informatics in Science and Engineering Centre for Doctoral Training (WISE CDT) offers a postgraduate programme that fosters enhanced levels of innovation and collaboration by training a cohort of engineers and scientists at the boundary of water informatics, science and engineering. The WISE CDT was established in 2014 with funding from the UK Engineering and Physical Sciences Research Council (EPSRC) amongst the universities of Bath, Bristol, Cardiff and Exeter. The WISE CDT will ultimately graduate over 80 PhD candidates trained in a non-traditional 4-year UK doctoral programme that integrates teaching and research elements in close collaboration with a range of industrial partners. WISE focuses on cohort-based education and equips the PhD candidates with a wide range of skills developed through workshops and other activities to maximise candidate abilities and experiences. We discuss the need for, the structure and results of the WISE CDT, which has been ongoing from 2013-2022 (final year of graduation). We conclude with lessons learned and an outlook for PhD training, based on our experience with this programme.Sanitary Engineerin

    Evolving wastewater infrastructure paradigm to enhance harmony with nature

    No full text
    Restoring and improving harmony between human activities and nature are essential to human well-being and survival. The role of wastewater infrastructure is evolving toward resource recovery to address this challenge. Yet, existing design approaches for wastewater systems focus merely on technological aspects of these systems. If system design could take advantage of natural ecological processes, it could ensure infrastructure development within ecological constraints and maximize other benefits. To test this hypothesis, we illustrate a data-driven, systems-level approach that couples natural ecosystems and the services they deliver to explore how sustainability principles could be embedded into the life phases of wastewater systems. We show that our design could produce outcomes vastly superior to those of conventional paradigms that focus on technologies alone, by enabling high-level recovery of both energy and materials and providing substantial benefits to offset a host of unintended environmental effects. This integrative study advances our understanding and suggests approaches for regaining a balance between satisfying human demands and maintaining ecosystems.Sanitary Engineerin

    Tropospheric composition and circulation of Uranus with ALMA and the VLA

    No full text
    We present Atacama Large Millimeter/submillimeter Array (ALMA) and Very Large Array (VLA) spatial maps of the Uranian atmosphere taken between 2015 and 2018 at wavelengths from 1.3 mm to 10 cm, probing pressures from ~1 to ~50 bar at spatial resolutions from 0 1 to 0 8. Radiative transfer modeling was performed to determine the physical origin of the brightness variations across Uranus's disk. The radio-dark equator and midlatitudes of the planet (south of ~50°N) are well fit by a deep H2S mixing ratio of 8.7+3.1- 1.5 ×10- 4 ( 37+13-6 × solar) and a deep NH3 mixing ratio of 1.7+0.7-0.4 ×10-4 ( 1.4+0.50.3× solar), in good agreement with models of Uranus's disk-averaged spectrum from the literature. The north polar region is very bright at all frequencies northward of ~50°N, which we attribute to strong depletions extending down to the NH4SH layer in both NH3 and H2S relative to the equatorial region; the model is consistent with an NH3 abundance of 4.7+2.1- 1.8 ×10-7 and an H2S abundance of <1.9×10-7 between ~20 and ~50 bar. Combining this observed depletion in condensible molecules with methane-sensitive near-infrared observations from the literature suggests large-scale downwelling in the north polar vortex region from ~0.1 to ~50 bar. The highest-resolution maps reveal zonal radio-dark and radio-bright bands at 20°S, 0°, and 20°N, as well as zonal banding within the north polar region. The difference in brightness is a factor of ~10 less pronounced in these bands than the difference between the north pole and equator, and additional observations are required to determine the temperature, composition, and vertical extent of these features.Astrodynamics & Space Mission

    Neptune's spatial brightness temperature variations from the vla and alma

    No full text
    We present spatially resolved (0 1-1 0) radio maps of Neptune taken from the Very Large Array and Atacama Large Millimeter/submillimeter Array between 2015 and 2017. Combined, these observations probe from just below the main methane cloud deck at ∼1 bar down to the NH4SH cloud at ∼50 bar. Prominent latitudinal variations in the brightness temperature are seen across the disk. Depending on wavelength, the south polar region is 5-40 K brighter than the mid-latitudes and northern equatorial region. We use radiative transfer modeling coupled to Markov Chain Monte Carlo methods to retrieve H2S, NH3, and CH4 abundance profiles across the disk, though only strong constraints can be made for H2S. Below all cloud formation, the data are well fit by -53.8+13.4 18.9 and -3.9+3.1 2.1 protosolar enrichment in the H2S and NH3 abundances, respectively, assuming a dry adiabat. Models in which the radio-cold mid-latitudes and northern equatorial region are supersaturated in H2S are statistically favored over models following strict thermochemical equilibrium. H2S is more abundant at the equatorial region than at the poles, indicative of strong, persistent global circulation. Our results imply that Neptune's sulfur-tonitrogen ratio exceeds unity, as H2S is more abundant than NH3 in every retrieval. The absence of NH3 above 50 bar can be explained either by partial dissolution of NH3 in an ionic ocean at GPa pressures or by a planet formation scenario in which hydrated clathrates preferentially delivered sulfur rather than nitrogen onto planetesimals, or a combination of these hypotheses.Astrodynamics & Space Mission

    First ALMA Millimeter-wavelength Maps of Jupiter, with a Multiwavelength Study of Convection

    No full text
    We obtained the first maps of Jupiter at 1-3 mm wavelength with the Atacama Large Millimeter/Submillimeter Array (ALMA) on 2017 January 3-5, just days after an energetic eruption at 16.5S jovigraphic latitude had been reported by the amateur community, and about two to three months after the detection of similarly energetic eruptions in the northern hemisphere, at 22.2-23.0N. Our observations, probing below the ammonia cloud deck, show that the erupting plumes in the South Equatorial Belt bring up ammonia gas from the deep atmosphere. While models of plume eruptions that are triggered at the water condensation level explain data taken at uv-visible and mid-infrared wavelengths, our ALMA observations provide a crucial, hitherto missing, link in the moist convection theory by showing that ammonia gas from the deep atmosphere is indeed brought up in these plumes. Contemporaneous Hubble Space Telescope data show that the plumes reach altitudes as high as the tropopause. We suggest that the plumes at 22.2-23.0N also rise up well above the ammonia cloud deck and that descending air may dry the neighboring belts even more than in quiescent times, which would explain our observations in the north.Astrodynamics & Space Mission

    Jet energy measurement and its systematic uncertainty in proton–proton collisions at

    No full text
    corecore