7 research outputs found

    Decomposition of roots of three plant communities in a Dutch salt marsh

    No full text
    Results of the first published study on root decomposition in a West European salt marsh are presented. In situ decomposition of roots of Spartinetum, Puccinellietum and Halimionetum communities were investigated using litter bags. Both the temporal pattern of decomposition and decomposition rate of belowground tissues of the three communities differed during 30 weeks in the marsh; Puccinellietum root litter lost 30–45% ash-free dry weight, Halimionetum root litter 17–26% and Spartinetum root litter 7–17%. Compared to aboveground decomposition in salt marshes these rates are low, however they are in the range of results reported for American and Australian salt marshes. Decomposition rates of root material buried at depths of 10 and 20 cm differed and there was a community × depth interaction. Initial content of structural components was highest in Halimionetum root litter and lowest in Puccinellietum root litter. Integrated soil temperature was highest in the Puccinellietum habitat, while flooding frequency was lowest in the Halimionetum habitat. Results indicate that environmental conditions can cause irregular fluctuations in belowground decomposition rates

    Decomposition of three halophytes in different habitats of an Eastern Scheldt salt marsh

    No full text
    A 20.5-month study was undertaken to determine detrital processing of the halophytes Spartina anglica, Elytrigia pungens, and Halimione portulacoides in three different habitats of an estuarine salt marsh in the South-West Netherlands. Decomposition was measured using litter-bags of three different mesh sizes to partition the effects of different faunal groups on decomposition. From April 1980 through October 1981 litter-bags were sampled regulary from a creek, the upper marsh, and from a plant-debris belt on the higher marsh. Dry weights and nutritive values were measured and animals were counted. Mainly rates of loss are reported here. Zonal differences were significant. At first, decomposition in the creek was most rapid. After two months the processes in the creek slowed down because of the trapping of silt by the bags, which probably simulated the natural course of the decomposition process in the water. Decomposition on the marsh followed the most regular pattern, while in the plant-debris belt the pattern was very irregular. Population dynamics of microfaunal organisms supported these findings. In the plant-debris belts loss rates seem to be higher than on the marsh, because of the influence of detritivorous macrofaunal organisms. The loss rates of the three plant species differed significantly. Halimione decomposed fastest, especially in the beginning, and in the plant-debris habitat. On the upper marsh and in the plant-debris belt the loss rates of Spartina seem to be a little higher than those of Elytrigia
    corecore