53 research outputs found

    Effect of dermal fibroblast conditioned medium on keratinocytes irrespective of age group

    Get PDF
    Skin aging causes delayed re-epithelialisation and impaired wound healing. Thus, supplementation of wound healing mediators and extracellular matrix (ECM) components may be a potential treatment strategy for age-related impaired wound healing. Fibroblasts secrete wound-healing factors and can be collected from used medium, i.e., dermal fibroblast conditioned medium (DFCM). In this study, we elucidated the effect of DFCM on the in vitro wound healing of keratinocytes isolated from different age groups (≥18–35, 36–54, ≥55 years) via cell attachment, growth rate, and wound healing rate assays. The DFCM was prepared by culturing confluent fibroblasts with serum-free keratinocytespecific (DFCM-KM) and fibroblast-specific (DFCM-FM) medium. The cell attachment efficiency decreased with the increase of age. However, keratinocyte attachment was enhanced in the DFCM-KM group, where it was 1.24, 1.27, and 1.32 times higher of cells concentration for the ≥18–35-, 36–54-, and ≥55-year age groups, respectively, as compared to the control group. The keratinocytes from each age group demonstrated a similar growth profile for all culture conditions, where the DFCM-KM group exhibited a comparable growth rate with the control group whilst the DFCM-FM group exhibited a significantly lower growth rate compared to the other groups. In contrast, the DFCM-FM group demonstrated a significantly higher healing rate in all age groups as compared to the DFCM-KM and control groups. However, there was no significant difference between the healing rates of the DFCM-KM and control groups. In conclusion, DFCM-KM enhanced keratinocyte attachment while DFCM-FM enhanced the keratinocyte healing rate irrespective of donor age, which indicated the potential application of DFCM in wound healing in aged skin

    3D Printed Bioscaffolds for Developing Tissue-Engineered Constructs

    Get PDF
    Tissue engineering techniques enable the fabrication of tissue substitutes integrating cells, biomaterials, and bioactive compounds to replace or repair damaged or diseased tissues. Despite the early success, current technology is unable to fabricate reproducible tissue-engineered constructs with the structural and functional similarity of the native tissue. The recent development of 3D printing technology empowers the opportunities of developing biofunctional complex tissue substitutes via layer-by-layer fabrication of cell(s), biomaterial(s), and bioactive compound(s) in precision. In this chapter, the current development of fabricating tissue-engineered constructs using 3D bioprinting technology for potential biomedical applications such as tissue replacement therapy, personalized therapy, and in vitro 3D modeling for drug discovery will be discussed. The current challenges, limitations, and role of stakeholders to grasp the future success also will be highlighted

    Chitosan/poly vinyl alcohol/graphene oxide based ph-responsive composite hydrogel films: drug release, anti-microbial and cell viability studies

    Get PDF
    The composite hydrogels were produced using the solution casting method due to the non-toxic and biocompatible nature of chitosan (CS)/polyvinyl alcohol (PVA). The best composition was chosen and crosslinked with tetraethyl orthosilicate (TEOS), after which different amounts of graphene oxide (GO) were added to develop composite hydrogels. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), atomic force microscopy (AFM) and contact angle was used to analyze the hydrogels. The samples were also evaluated for swelling abilities in various mediums. The drug release profile was studied in phosphate-buffered saline (PBS) at a pH of 7.4. To predict the mechanism of drug release, the data were fitted into kinetic models. Finally, antibacterial activity and cell viability data were obtained. FTIR studies revealed the successful synthesis of CS/PVA hydrogels and GO/CS/PVA in hydrogel composite. SEM showed no phase separation of the polymers, whereas AFM showed a decrease in surface roughness with an increase in GO content. 100 µL of crosslinker was the critical concentration at which the sample displayed excellent swelling and preserved its structure. Both the crosslinked and composite hydrogel showed good swelling. The most acceptable mechanism of drug release is diffusion-controlled, and it obeys Fick’s law of diffusion for drug released. The best fitting of the zero-order, Hixson-Crowell and Higuchi models supported our assumption. The GO/CS/PVA hydrogel composite showed better antibacterial and cell viability behaviors. They can be better biomaterials in biomedical applications

    Current Update of Collagen Nanomaterials—Fabrication, Characterisation and Its Applications: A Review

    No full text
    Tissue engineering technology is a promising alternative approach for improvement in health management. Biomaterials play a major role, acting as a provisional bioscaffold for tissue repair and regeneration. Collagen a widely studied natural component largely present in the extracellular matrix (ECM) of the human body. It provides mechanical stability with suitable elasticity and strength to various tissues, including skin, bone, tendon, cornea and others. Even though exogenous collagen is commonly used in bioscaffolds, largely in the medical and pharmaceutical fields, nano collagen is a relatively new material involved in nanotechnology with a plethora of unexplored potential. Nano collagen is a form of collagen reduced to a nanoparticulate size, which has its advantages over the common three-dimensional (3D) collagen design, primarily due to its nano-size contributing to a higher surface area-to-volume ratio, aiding in withstanding large loads with minimal tension. It can be produced through different approaches including the electrospinning technique to produce nano collagen fibres resembling natural ECM. Nano collagen can be applied in various medical fields involving bioscaffold insertion or fillers for wound healing improvement; skin, bone, vascular grafting, nerve tissue and articular cartilage regeneration as well as aiding in drug delivery and incorporation for cosmetic purposes

    Injectable Hydrogels for Chronic Skin Wound Management: A Concise Review

    No full text
    Diabetic foot ulcers (DFU) are a predominant impediment among diabetic patients, increasing morbidity and wound care costs. There are various strategies including using biomaterials have been explored for the management of DFU. This paper will review the injectable hydrogel application as the most studied polymer-based hydrogel based on published journals and articles. The main key factors that will be discussed in chronic wounds focusing on diabetic ulcers include the socioeconomic burden of chronic wounds, biomaterials implicated by the government for DFU management, commercial hydrogel product, mechanism of injectable hydrogel, the current study of novel injectable hydrogel and the future perspectives of injectable hydrogel for the management of DFU

    Cellulose/Collagen Dressings for Diabetic Foot Ulcer: A Review

    No full text
    Diabetic foot ulcer (DFU) is currently a global concern and it requires urgent attention, as the cost allocation by the government for DFU increases every year. This review was performed to provide scientific evidence on the advanced biomaterials that can be utilised as a first-line treatment for DFU patients. Cellulose/collagen dressings have a biological property on non-healing wounds, such as DFU. This review aims to analyse scientific-based evidence of cellulose/collagen dressing for DFU. It has been proven that the healing rate of cellulose/collagen dressing for DFU patients demonstrated a significant improvement in wound closure as compared to current standard or conventional dressings. It has been scientifically proven that cellulose/collagen dressing provides a positive effect on non-healing DFU. There is a high tendency for cellulose/collagen dressing to be used, as it highly promotes angiogenesis with a rapid re-epithelisation rate that has been proven effective in clinical trials

    Epigallocatechin Gallate: The Emerging Wound Healing Potential of Multifunctional Biomaterials for Future Precision Medicine Treatment Strategies

    No full text
    Immediate treatment for cutaneous injuries is a realistic approach to improve the healing rate and minimise the risk of complications. Multifunctional biomaterials have been proven to be a potential strategy for chronic skin wound management, especially for future advancements in precision medicine. Hence, antioxidant incorporated biomaterials play a vital role in the new era of tissue engineering. A bibliographic investigation was conducted on articles focusing on in vitro, in vivo, and clinical studies that evaluate the effect and the antioxidants mechanism exerted by epigallocatechin gallate (EGCG) in wound healing and its ability to act as reactive oxygen species (ROS) scavengers. Over the years, EGCG has been proven to be a potent antioxidant efficient for wound healing purposes. Therefore, several novel studies were included in this article to shed light on EGCG incorporated biomaterials over five years of research. However, the related papers under this review’s scope are limited in number. All the studies showed that biomaterials with scavenging ability have a great potential to combat chronic wounds and assist the wound healing process against oxidative damage. However, the promising concept has faced challenges extending beyond the trial phase, whereby the implementation of these biomaterials, when exposed to an oxidative stress environment, may disrupt cell proliferation and tissue regeneration after transplantation. Therefore, thorough research should be executed to ensure a successful therapy

    Current Update of Collagen Nanomaterials—Fabrication, Characterisation and Its Applications: A Review

    No full text
    Tissue engineering technology is a promising alternative approach for improvement in health management. Biomaterials play a major role, acting as a provisional bioscaffold for tissue repair and regeneration. Collagen a widely studied natural component largely present in the extracellular matrix (ECM) of the human body. It provides mechanical stability with suitable elasticity and strength to various tissues, including skin, bone, tendon, cornea and others. Even though exogenous collagen is commonly used in bioscaffolds, largely in the medical and pharmaceutical fields, nano collagen is a relatively new material involved in nanotechnology with a plethora of unexplored potential. Nano collagen is a form of collagen reduced to a nanoparticulate size, which has its advantages over the common three-dimensional (3D) collagen design, primarily due to its nano-size contributing to a higher surface area-to-volume ratio, aiding in withstanding large loads with minimal tension. It can be produced through different approaches including the electrospinning technique to produce nano collagen fibres resembling natural ECM. Nano collagen can be applied in various medical fields involving bioscaffold insertion or fillers for wound healing improvement; skin, bone, vascular grafting, nerve tissue and articular cartilage regeneration as well as aiding in drug delivery and incorporation for cosmetic purposes

    Comprehensive Review of Hybrid Collagen and Silk Fibroin for Cutaneous Wound Healing

    No full text
    The use of hybridisation strategy in biomaterials technology provides a powerful synergistic effect as a functional matrix. Silk fibroin (SF) has been widely used for drug delivery, and collagen (Col) resembles the extracellular matrix (ECM). This systematic review was performed to scrutinise the outcome of hybrid Col and SF for cutaneous wound healing. This paper reviewed the progress of related research based on in vitro and in vivo studies and the influence of the physicochemical properties of the hybrid in wound healing. The results indicated the positive outcome of hybridising Col and SF for cutaneous wound healing. The hybridisation of these biomaterials exhibits an excellent moisturising property, perfectly interconnected structure, excellent water absorption and retention capacity, an acceptable range of biodegradability, and synergistic effects in cell viability. The in vitro and in vivo studies clearly showed a promising outcome in the acceleration of cutaneous wound healing using an SF and Col hybrid scaffold. The review of this study can be used to design an appropriate hybrid scaffold for cutaneous wound healing. Therefore, this systematic review recapitulated that the hybridisation of Col and SF promoted rapid cutaneous healing through immediate wound closure and reepithelisation, with no sign of adverse events. This paper concludes on the need for further investigations of the hybrid SF and Col in the future to ensure that the hybrid biomaterials are well-suited for human skin

    Applications of drug delivery systems, organic, and inorganic nanomaterials in wound healing

    No full text
    Abstract The skin is known to be the largest organ in the human body, while also being exposed to environmental elements. This indicates that skin is highly susceptible to physical infliction, as well as damage resulting from medical conditions such as obesity and diabetes. The wound management costs in hospitals and clinics are expected to rise globally over the coming years, which provides pressure for more wound healing aids readily available in the market. Recently, nanomaterials have been gaining traction for their potential applications in various fields, including wound healing. Here, we discuss various inorganic nanoparticles such as silver, titanium dioxide, copper oxide, cerium oxide, MXenes, PLGA, PEG, and silica nanoparticles with their respective roles in improving wound healing progression. In addition, organic nanomaterials for wound healing such as collagen, chitosan, curcumin, dendrimers, graphene and its derivative graphene oxide were also further discussed. Various forms of nanoparticle drug delivery systems like nanohydrogels, nanoliposomes, nanofilms, and nanoemulsions were discussed in their function to deliver therapeutic agents to wound sites in a controlled manner
    corecore