5 research outputs found

    Entropic forces drive cellular contact guidance

    No full text
    Contact guidance-the widely known phenomenon of cell alignment induced by anisotropic environmental features-is an essential step in the organization of adherent cells, but the mechanisms by which cells achieve this orientational ordering remain unclear. Here, we seeded myofibroblasts on substrates micropatterned with stripes of fibronectin and observed that contact guidance emerges at stripe widths much greater than the cell size. To understand the origins of this surprising observation, we combined morphometric analysis of cells and their subcellular components with a, to our knowledge, novel statistical framework for modeling nonthermal fluctuations of living cells. This modeling framework is shown to predict not only the trends but also the statistical variability of a wide range of biological observables, including cell (and nucleus) shapes, sizes, and orientations, as well as stress-fiber arrangements within the cells with remarkable fidelity with a single set of cell parameters. By comparing observations and theory, we identified two regimes of contact guidance: 1) guidance on stripe widths smaller than the cell size (w ≤ 160 μm), which is accompanied by biochemical changes within the cells, including increasing stress-fiber polarization and cell elongation; and 2) entropic guidance on larger stripe widths, which is governed by fluctuations in the cell morphology. Overall, our findings suggest an entropy-mediated mechanism for contact guidance associated with the tendency of cells to maximize their morphological entropy through shape fluctuations

    Functional peptide presentation on different hydrogen bonding biomaterials using supramolecular additives

    Get PDF
    Supramolecular biomaterials based on hydrogen bonding units can be conveniently functionalized in a mix-and-match approach using supramolecular additives. The presentation of bioactive additives has been sparsely investigated in supramolecular-based elastomeric biomaterials. Here it was investigated how cell adhesive peptides are presented and affect the surface in supramolecular biomaterials based either on ureido-pyrimidinone (UPy) or bisurea (BU) moieties. Polycaprolactone modified with UPy or BU moieties served as the base material. RGD or cyclic (c)RGD were conjugated to complementary supramolecular motifs, and were mixed with the corresponding base materials as supramolecular additives. Biomaterial surface morphology changed upon bioactivation, resulting in the formation of random aggregates on UPy-based materials, and fibrous aggregates on BU-materials. Moreover, peptide type affected aggregation morphology, in which RGD led to larger cluster formation than cRGD. Increased cRGD concentrations led to reduced focal adhesion size and cell migration velocity, and increased focal adhesion numbers in both systems, yet most prominent on functionalized BU-biomaterials. In conclusion, both systems exhibited distinct peptide presenting properties, of which the BU-system most strongly affected cellular adhesive behavior on the biomaterial. This research provided deeper insights in the differences between supramolecular elastomeric platforms, and the level of peptide introduction for biomaterial applications

    Protein Micropatterning in 2.5D: An Approach to Investigate Cellular Responses in Multi-Cue Environments

    No full text
    The extracellular microenvironment is an important regulator of cell functions. Numerous structural cues present in the cellular microenvironment, such as ligand distribution and substrate topography, have been shown to influence cell behavior. However, the roles of these cues are often studied individually using simplified, single-cue platforms that lack the complexity of the three-dimensional, multi-cue environment cells encounter in vivo. Developing ways to bridge this gap, while still allowing mechanistic investigation into the cellular response, represents a critical step to advance the field. Here, we present a new approach to address this need by combining optics-based protein patterning and lithography-based substrate microfabrication, which enables high-throughput investigation of complex cellular environments. Using a contactless and maskless UV-projection system, we created patterns of extracellular proteins (resembling contact-guidance cues) on a two-and-a-half-dimensional (2.5D) cell culture chip containing a library of well-defined microstructures (resembling topographical cues). As a first step, we optimized experimental parameters of the patterning protocol for the patterning of protein matrixes on planar and non-planar (2.5D cell culture chip) substrates and tested the technique with adherent cells (human bone marrow stromal cells). Next, we fine-tuned protein incubation conditions for two different vascular-derived human cell types (myofibroblasts and umbilical vein endothelial cells) and quantified the orientation response of these cells on the 2.5D, physiologically relevant multi-cue environments. On concave, patterned structures (curvatures between κ = 1/2500 and κ = 1/125 μm-1), both cell types predominantly oriented in the direction of the contact-guidance pattern. In contrast, for human myofibroblasts on micropatterned convex substrates with higher curvatures (κ ≥ 1/1000 μm-1), the majority of cells aligned along the longitudinal direction of the 2.5D features, indicating that these cells followed the structural cues from the substrate curvature instead. These findings exemplify the potential of this approach for systematic investigation of cellular responses to multiple microenvironmental cues

    Correction to "Protein Micropatterning in 2.5D: An Approach to Investigate Cellular Responses in Multi-Cue Environments"

    Get PDF
    In the original version of this article, section Materials and Methods, Table 1 contains a mistake. In the description of "passivation with poly-L-lysine and mPEG-SVA", the concentration of poly-L-lysine should be 0.1 mg/mL. In the revised table below, this correct concentration is included. This correction does not alter any conclusions of this work. (Table presented)
    corecore