24 research outputs found

    Neural network predictions of drawdown from groundwater abstraction in the Egebjerg catchment, Denmark

    Get PDF
    Results from numerical simulations play a vital role in the decision process of everyday groundwater management. However, these simulations can be time-consuming for large-scale investigations, and it can be necessary to apply approximate methods instead.This study investigates the abilities of a neural network to replicate simulated drawdown from groundwater abstraction in a numerical groundwater model of the Egebjerg catchment, Denmark. We follow a generalised methodology that uses the information within the deterministic numerical model to create a training set for the neural network to learn from and extend the method to work in a 3D Danish groundwater model case. We compare the abilities of the trained neural network with the results of conventional computations in terms of speed and accuracy and argue that this approach has the potential to improve decision support for decision-makers within groundwater management

    Neuromuscular Electrical Stimulation improves Activities of Daily Living Post-Stroke: A Systematic Review and Meta-analysis

    No full text
    OBJECTIVES: (1) To elucidate the effectiveness of neuromuscular electrical stimulation (NMES) toward improving activities of daily living (ADL) and functional motor ability post stroke and (2) to investigate the influence of paresis severity and the timing of treatment initiation for the effectiveness of NMES. DATA SOURCES: PubMed, MEDLINE, Embase, Physiotherapy Evidence Database (PEDro) and Cochrane Library searched for relevant articles from database inception to May 2020. STUDY SELECTION: The inclusion criteria were randomized controlled trials exploring the effect of NMES toward improving ADL or functional motor ability in survivors of stroke. The search identified 6064 potential articles with 20 being included. DATA EXTRACTION: Two independent reviewers conducted the data extraction. Methodological quality was assessed using the PEDro scale and the Cochrane Risk of Bias Tool. DATA SYNTHESIS: Data from 428 and 659 participants (mean age, 62.4 years; 54% male) for outcomes of ADL and functional motor ability, respectively, were pooled in a random-effect meta-analysis. The analysis revealed a significant positive effect of NMES toward ADL (standardized mean difference [SMD], 0.41; 95% CI, 0.14-0.67; P=.003), whereas no effect on functional motor ability was evident. Subgroup analyses showed that application of NMES in the subacute stage (SMD, 0.44; 95% CI, 0.09-0.78; P=.01) and in the upper extremity (SMD, 0.34; 95% CI, 0.04-0.64; P=.02) improved ADL, whereas a beneficial effect was observed for functional motor abilities in patients with severe paresis (SMD, 0.41; 95% CI, 0.12-0.70; P=.005). CONCLUSIONS: The results of the present meta-analysis are indicative of potential beneficial effects of NMES toward improving ADL post stroke, whereas the potential for improving functional motor ability appears less clear. Furthermore, subgroup analyses indicated that NMES application in the subacute stage and targeted at the upper extremity is efficacious for ADL rehabilitation and that functional motor abilities can be positively affected in patients with severe paresis

    Test-Retest Reliability and Agreement of Single Pulse Transcranial Magnetic Stimulation (TMS) for Measuring Activity in Motor Cortex in Patients With Acute Ischemic Stroke

    No full text
    Background: Transcranial magnetic stimulation (TMS) is often used to examine neurophysiology. We aimed to investigate the inter-rater reliability and agreement of single pulse TMS in hospitalised acute ischemic stroke patients. Methods: Thirty-one patients with first-time acute ischemic stroke (median age 72 (IQR 64-75), 35% females) underwent TMS motor threshold (MT) assessment in 4 muscles bilaterally, conducted by 1 of 2 physiotherapists. Test-retest reliability was evaluated using a two-way random effects model (2,1) absolute agreement-type Interclass Correlation Coefficient (ICC). Standard Error of Measurement (SEM) and Smallest Detectable Change (SDC) were used to evaluate agreement. Results: Reliability, SEM, and SDC of TMS was found to be moderate in right opponens pollicis (0.78 [CI 95% 0.55-0.89], SEM: 4.51, SDC: 12.51), good in right vastus medialis and tibial anterior (0.88 [CI 95% 0.72-0.96], SEM: 2.89, SDC: 8.01 and 0.88 [CI 95% 0.76-0.94], SEM: 2.88, SDC: 7.98 respectively), and excellent in right and left biceps brachii (0.98 [CI 95% 0.96-0.99], SEM: 1.79 SDC: 4.96, and 0.94 [CI 95% 0.89-0.97], SEM: 2.17 SDC: 6.01), opponens pollicis (0.92 [CI 95% 0.83-0.96], SEM: 2.68 SDC: 8.26, vastus medialis (0.92 [CI 95% 0.84-0.96], SEM: 2.87 SDC: 7.95), and tibial anterior (0.93 [CI 95% 0.86-0.96], SEM: 2.51 SDC: 6.95). Conclusion: The TMS demonstrated moderate to excellent inter-rater reliability confirming the ability of these measures to reliably discriminate between individuals in the current study sample. Improvements of less than 4.96 to 12.51 could be a result of measurement error and may therefore not be considered a true change
    corecore