2 research outputs found

    Heritability of anthropometric phenotypes in caste populations of Visakhapatnam, India

    Get PDF
    This is the publisher's version, also available electronically from http://digitalcommons.wayne.edu/humbiol/vol74/iss3/1/.In this study, we used anthropometric data from six Andhra caste populations to examine heritability patterns of 23 anthropometric phenotypes (linear, craniofacial, and soft tissue measures) with special reference to caste differences. We obtained anthropometric data from 342 nuclear families from Brahmin, Reddy, Telaga, Nagara, Ag. Kshatriya, and Mala castes of Visakhapatnam, India. These caste groups represent the existing hierarchical stratification of Indian populations. We used a variance components approach to determine the heritability (h2) of these 23 anthropometric phenotypes (height, weight, BMI, etc.). The sample consisted of 1918 individuals ranging in age from 6 to 72 years (mean = 21.5, S.D. = 13.8). The heritabilities (h2 ± S.E.) for all anthropometric traits for the entire sample were significant (p < 0.0001) and varied from 0.25 ± 0.05 (BMI) to 0.61 ± 0.05 (bizygomatic breadth) after accounting for sex, age, and caste effects. Since data on socioeconomic and nutritional covariates were available for a subset of families, we repeated the genetic analyses using this subset, which has yielded higher heritabilities ranging from 0.21 ± 0.16 (head breadth) to 0.72 ± 0.18 (nasal breadth). In general, craniofacial measurements exhibited higher h2 compared to linear measures. Breadth measurements and circumferences yielded more or less similar heritabilities. Age and sex effects were significant (p < 0.0001) for most of the traits, while the effects of caste, socioeconomic status, and nutritional status were inconsistent across the traits. In conclusion, anthropometric phenotypes examined in this study are under appreciable additive genetic influences

    mtDNA Variation in Caste Populations of Andhra Pradesh, India.

    Get PDF
    Various anthropological analyses have documented extensive regional variation among populations on the subcontinent of India using morphological, protein, blood group, and nuclear DNA polymorphisms. These patterns are the product of complex population structure (genetic drift, gene flow) and a population history noted for numerous branching events. As a result, the interpretation of relationships among caste populations of South India and between Indians and continental populations remains controversial. The Hindu caste system is a general model of genetic differentiation among endogamous populations stratified by social forces (e.g., religion and occupation). The mitochondrial DNA (mtDNA) molecule has unique properties that facilitate the exploration of population structure. We analyzed 36 Hindu men born in Andhra Pradesh who were unrelated matrilineally through at least 3 generations and who represent 4 caste populations: Brahmin (9), Yadava (10), Kapu (7), and Relli (10). Individuals from Africa (36), Asia (36), and Europe (36) were sampled for comparison. A 200-base-pair segment of hypervariable segment 2 (HVS2) of the mtDNA control region was sequenced in all individuals. In the Indian castes 25 distinct haplotypes are identified. Aside from the Cambridge reference sequence, only two haplotypes are shared between caste populations. Middle castes form a highly supported cluster in a neighbor-joining network. Mean nucleotide diversity within each caste is 0.015, 0.012, 0.011, and 0.012 for the Brahmin, Yadava, Kapu, and Relli, respectively. mtDNA variation is highly structured between castes (GST = 0.17; p < 0.002). The effects of social structure on mtDNA variation are much greater than those on variation measured by traditional markers. Explanations for this discordance inelude (1) the higher resolving power of mtDNA, (2) sex-dependent gene flow, (3) differences in male and female effective population sizes, and (4) elements of the kinship structure. Thirty distinct haplotypes are found in Africans, 17 in Asians, and 13 in Europeans. Mean nucleotide diversity is 0.019, 0.014, 0.009, and 0.007 for Africans, Indians, Asians, and Europeans, respectively. These populations are highly structured geographically (GST = 0.15;p < 0.001). The caste populations of Andhra Pradesh cluster more often with Africans than with Asians or Europeans. This is suggestive of admixture with African populations.We would like to thank T. Jenkins, H. Soodyall, P. Nute, and J. Kidd for providing DNA samples and S. Austin, A. Comuzzie, R. Duggirala, R. Feldman, K. Lum, A. Rogers, and S. Watkins for technical advice, critical comments, and thoughtful discussion. This work was supported in part by the National Science Foundation through grant NSF-DBS-9211255, the Clinical Research Center at the University of Utah through grant NIH RR-00064, and the Technology Access Center of the Utah Human Genome Project
    corecore