8 research outputs found

    Effects of ZnO Nanoparticles and Biochar of Rice Straw and Cow Manure on Characteristics of Contaminated Soil and Sunflower Productivity, Oil Quality, and Heavy Metals Uptake

    No full text
    Contaminated soils can cause a potential risk into the health of the environment and soil as well as the quality and productivity of plants. The objectives of our study were to investigate the integrative advantageous effects of foliar ZnO nanoparticles (NPs) (60 mg Zn NPs L−1), rice straw biochar (RSB; 8.0 t ha−1), cow-manure biochar (CMB, 8.0 t ha−1), and a combination thereof (50% of each) on sunflowers grown in agricultural land irrigated with polluted wastewater for the long term (≈50 years). The availability of heavy metals (HMs) in soil, HMs accumulation in whole biomass aboveground, growth, productivity, and quality characteristics of the sunflower were investigated. The combination treatment significantly minimized the availability of HMs in soil, and, consequently, substantially lessened the uptake of HMs by the sunflower, compared to treatments of ZnO NPs and control (i.e., untreated soil). The application of the combination treatment reduced the availability of Pb, Cr, Cu, and Cd in the soil by 78.6%, 115.3%, 153.3%, and 178.5% in comparison to untreated plots post-harvest, respectively. Compared to untreated plots, it also reduced the Pb, Cr, Cu, and Cd in plant biomass by 1.13, 5.19, 3.88, and 0.26 mg kg−1 DM, respectively. Furthermore, combination treatment followed by biochar as an individual application caused a significant improvement in sunflower productivity and quality in comparison to untreated soil. For instance, seed yield ha−1, 100-seed weight, and number of seeds per head obtained from the combination treatment was greater than the results obtained from the untreated plots by 42.6%, 47.0%, and 50.4%, respectively. In summary, the combined treatment of NPs and both RSB and CMB is recommended as a result of their positive influence on sunflower oil quality and yield as well as on minimizing the negative influences of HMs

    Integrated Application of Selenium and Silicon Enhances Growth and Anatomical Structure, Antioxidant Defense System and Yield of Wheat Grown in Salt-Stressed Soil

    No full text
    Selenium (Se) and silicon (Si) are considered advantageous elements to induce plants’ tolerance to various environmental stresses. Wheat yield is negatively affected by salinity stress, especially in dry and semi-dry areas. Therefore, the objective of the current study was to investigate the effects of Se, Si and their combinations (0 as control, Se15, Se30, Si15, Si30, Se15 + Si15, and Se30 + Si30 mM) in alleviating the deleterious effects of salinity stress (7.61 dS m−1, real field conditions) on anatomical characteristics as well as the physio-biochemical and productivity parameters of wheat plants. The selenium and silicon treatments and their combinations caused significant amelioration in growth, anatomical and physiological attributes, and grain yields of salinity-stressed wheat in comparison with the untreated plants (control treatment). The integrated application of Se30 + Si30 significantly increased plant growth (i.e., plant height 28.24%, number of tillers m−2 76.81%, fresh weight plant−1 80.66%, and dry weight plant−1 79.65%), Fv/Fm (44.78%), performance index (PI; 60.45%), membrane stability index (MSI; 36.39%), relative water content (RWC; 29.39%), total soluble sugars (TSS; 53.38%), proline (33.74%), enzymatic antioxidants (i.e., CAT activity by 14.45%, GR activity by 67.5%, SOD activity by 35.37% and APX activity by 39.25%) and non-enzymatic antioxidants (i.e., GSH content by 117.5%, AsA content by 52.32%), yield and its components (i.e., number of spikelets spike−1 29.55%, 1000-grain weight 48.73% and grain yield ha−1 26.44%). The anatomical traits of stem and leaves were improved in wheat plants treated with Se30 + Si30. These changes resulting from the exogenous applications of Se, Si or their combinations, in turn, make these elements prospective in helping wheat plants to acclimate successfully to saline soil

    Azolla Compost as an Approach for Enhancing Growth, Productivity and Nutrient Uptake of <i>Oryza sativa</i> L.

    No full text
    The excessive application of synthetic fertilizers can result in severe environmental risks, while composting green and fresh feedstocks can provide slow-release nutrients. Therefore, the aim of the current investigation was to study the effects of eight individual and combination treatments of azolla compost and NPK synthetic fertilizers (control = no fertilizer and compost; 100% NPK = full recommended dose of synthetic fertilizers as follows: 165 kg N ha−1, 37 kg P2O5 ha−1 and 50 kg K2O ha−1; 70% NPK; 40% NPK; 100% azolla compost (5 t DM ha−1); 50% NPK + 50% azolla compost; 70% NPK + 30% azolla compost and 40% NPK + 60% azolla compost) on rice growth, productivity and nutrient uptake in semi-arid agro-ecosystems. The results indicated that the combination of 40% NPK + 60% azolla compost or 50% NPK + 50% azolla compost resulted in the most optimal growth and the highest yield components. In addition, the application of 40% NPK + 60% azolla compost exhibited similar rice grain yields (10.76 t ha−1) as well as N, P, and K content and uptake compared with the full recommended dose of NPK fertilizer (100% NPK). This study declared that the utilization of azolla compost as an individual or combination application can reduce usage of synthetic fertilizers by up to 60% without significant reduction in the growth and grain productivity of rice

    Azolla Compost as an Approach for Enhancing Growth, Productivity and Nutrient Uptake of Oryza sativa L.

    No full text
    The excessive application of synthetic fertilizers can result in severe environmental risks, while composting green and fresh feedstocks can provide slow-release nutrients. Therefore, the aim of the current investigation was to study the effects of eight individual and combination treatments of azolla compost and NPK synthetic fertilizers (control = no fertilizer and compost; 100% NPK = full recommended dose of synthetic fertilizers as follows: 165 kg N ha&minus;1, 37 kg P2O5 ha&minus;1 and 50 kg K2O ha&minus;1; 70% NPK; 40% NPK; 100% azolla compost (5 t DM ha&minus;1); 50% NPK + 50% azolla compost; 70% NPK + 30% azolla compost and 40% NPK + 60% azolla compost) on rice growth, productivity and nutrient uptake in semi-arid agro-ecosystems. The results indicated that the combination of 40% NPK + 60% azolla compost or 50% NPK + 50% azolla compost resulted in the most optimal growth and the highest yield components. In addition, the application of 40% NPK + 60% azolla compost exhibited similar rice grain yields (10.76 t ha&minus;1) as well as N, P, and K content and uptake compared with the full recommended dose of NPK fertilizer (100% NPK). This study declared that the utilization of azolla compost as an individual or combination application can reduce usage of synthetic fertilizers by up to 60% without significant reduction in the growth and grain productivity of rice

    Field Crop Responses and Management Strategies to Mitigate Soil Salinity in Modern Agriculture: A Review

    No full text
    The productivity of cereal crops under salt stress limits sustainable food production and food security. Barley followed by sorghum better adapts to salinity stress, while wheat and maize are moderately adapted. However, rice is a salt-sensitive crop, and its growth and grain yield are significantly impacted by salinity stress. High soil salinity can reduce water uptake, create osmotic stress in plants and, consequently, oxidative stress. Crops have evolved different tolerance mechanisms, particularly cereals, to mitigate the stressful conditions, i.e., effluxing excessive sodium (Na+) or compartmentalizing Na+ to vacuoles. Likewise, plants activate an antioxidant defense system to detoxify apoplastic cell wall acidification and reactive oxygen species (ROS). Understanding the response of field crops to salinity stress, including their resistance mechanisms, can help breed adapted varieties with high productivity under unfavourable environmental factors. In contrast, the primary stages of seed germination are more critical to osmotic stress than the vegetative stages. However, salinity stress at the reproductive stage can also decrease crop productivity. Biotechnology approaches are being used to accelerate the development of salt-adapted crops. In addition, hormones and osmolytes application can mitigate the toxicity impact of salts in cereal crops. Therefore, we review the salinity on cereal crops physiology and production, the management strategies to cope with the harmful negative effect on cereal crops physiology and production of salt stress

    Sequential Application of Antioxidants Rectifies Ion Imbalance and Strengthens Antioxidant Systems in Salt-Stressed Cucumber

    No full text
    Exogenous antioxidant applications enable salt-stressed plants to successfully cope with different environmental stresses. The objectives of this investigation were to study the effects of sequential treatments of proline (Pro), ascorbic acid (AsA), and/or glutathione (GSH) on 100 mM NaCl-stressed cucumber transplant&rsquo;s physio-biochemical and growth traits as well as systems of antioxidant defense. Under salinity stress, different treatment of AsA, Pro, or/and GSH improved growth characteristics, stomatal conductance (gs), enhanced the activities of glutathione reductase (GR), superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT) as well as increased contents of AsA, Pro, and GSH. However, sequential application of antioxidants (GSH-Pro- AsA) significantly exceeded all individual applications, reducing leaf and root Cd2+ and Na+ contents in comparison to the control. In plants grown under NaCl-salt stress, growth characteristics, photosynthetic efficiency, membrane stability index (MSI), relative water content (RWC), contents of root and leaf K+ and Ca2+, and ratios of K+/Na+ and Ca2+/Na+ were notably reduced, while leaf contents of non-enzymatic and enzymatic antioxidants, as well as root and leaf Cd2+ and Na+ concentrations were remarkably increased. However, AsA, Pro, or/and GSH treatments significantly improved all investigated growth characteristics, photosynthetic efficiency, RWC and MSI, as well as AsA, Pro, and GSH, and enzymatic activity, leaf and root K+ and Ca2+ contents and their ratios to Na+, while significantly reduced leaf and root Cd2+ and Na+ contents

    Unveiling the Potential of Novel Macrophytes for the Treatment of Tannery Effluent in Vertical Flow Pilot Constructed Wetlands

    No full text
    The phytoremediation potential of macrophytic species has made them an inevitable component of constructed wetlands (CWs) for the treatment of industrial effluents. The macrophytes must have tolerance for the harsh conditions imposed by effluents for an effective establishment of the CW system. In this context, the basic purpose of this work was to investigate the efficacy of five indigenous emergent macrophytes (Brachiaria mutica, Canna indica, Cyperus laevigatus, Leptochloa fusca, and Typha domingensis) for the remediation of tannery effluent in vertical subsurface flow CWs. The ability of each macrophytic species to tolerate pollution load and to remove pollutants from the effluent was assessed. The effect of tannery effluent on the survival and growth of macrophytes was also studied. The treated tannery effluent samples were analyzed for electrical conductivity (EC), pH, biochemical oxygen demand (BOD5), chemical oxygen demand (COD), total dissolved solids (TDS), total suspended solids (TSS), chlorides (Cl&minus;), sulphates (SO42&minus;), oil and grease, and Cr levels. All of the studied macrophytes significantly decreased the pollution load of tannery effluent, and the higher nutrient content of effluent stimulated their growth without any signs of negative health effects. Leptochloa fusca and T. domingensis performed better in removing pollutants and showed higher growth rates and biomass than other tested macrophytes and can be considered preferred species for use in CWs treating tannery effluent. Brachiaria mutica showed morphologically better results than C. indica and C. laevigatus
    corecore