2 research outputs found

    Development of zerovalent iron and titania (Fe0/TiO2) composite for oxidative degradation of dichlorophene in aqueous solution: synergistic role of peroxymonosulfate (HSO5−)

    Get PDF
    Abstract Binary composite of zerovalent iron and titanium dioxide (Fe0/TiO2) was synthesized for the catalytic removal of dichlorophene (DCP) in the presence of peroxymonosulfate (PMS). The as-prepared composite (Fe0/TiO2) exhibits synergistic effect and enhanced properties like improved catalytic activity of catalyst and greater magnetic property for facile recycling of catalyst. The results showed that without addition of PMS at reaction time of 50 min, the percent degradation of DCP by TiO2, Fe0, and Fe0/TiO2 was just 5%, 11%, and 12%, respectively. However, with the addition of 0.8 mM PMS, at 10 min of reaction time, the catalytic degradation performance of Fe0, TiO2, and Fe0/TiO2 was significantly improved to 82%, 18%, and 88%, respectively. The as-prepared catalyst was fully characterized to evaluate its structure, chemical states, and morphology. Scanning electron microscopy results showed that in composite TiO2 causes dispersion of agglomerated iron particles which enhances porosity and surface area of the composites and X-ray diffraction (XRD), energy dispersive X-ray (EDX), and Fourier-transform infrared (FTIR) results revealed successful incorporation of Fe0, and oxides of Fe and TiO2 in the composite. The adsorption–desorption analysis verifies that the surface area of Fe0/TiO2 is significantly larger than bare Fe0 and TiO2. Moreover, the surface area, particle size, and crystal size of Fe0/TiO2 was surface area = 85 m2 g−1, particle size = 0.35 μm, and crystal size = 0.16 nm as compared to TiO2 alone (surface area = 22 m2 g−1, particle size = 4.25 μm, and crystal size = 25.4 nm) and Fe0 alone (surface area = 65 m2 g−1, particle size = 0.9 μm, and crystal size = 7.87 nm). The as-synthesized material showed excellent degradation performance in synthesized wastewater as well. The degradation products and their toxicities were evaluated and the resulted degradation mechanism was proposed accordingly. The toxicity values decreased in order of DP1 \u3e DP5 \u3e DP2 \u3e DP3 \u3e DP4 and the LC50 values toward fish for 96-h duration decreased from 0.531 to 67.2. This suggests that the proposed technology is an excellent option for the treatment of antibiotic containing wastewater.Graphical abstrac

    Bismuth-Doped Nano Zerovalent Iron: A Novel Catalyst for Chloramphenicol Degradation and Hydrogen Production

    Get PDF
    © In this study, we showed that doping bismuth (Bi) at the surface of Fe0 (Bi/Fe0, bimetallic iron system) - synthesized by a simple borohydride reduction method - can considerably accelerate the reductive degradation of chloramphenicol (CHP). At a reaction time of 12 min, 62, 68, 74, 95, and 82% degradation of CHP was achieved with Fe0, Bi/Fe0-1 [1% (w/w) of Bi], Bi/Fe0-3 [3% (w/w) of Bi], Bi/Fe0-5 [5% (w/w) of Bi], and Bi/Fe0-8 [8% (w/w) of Bi], respectively. Further improvements in the degradation efficiency of CHP were observed by combining the peroxymonosulfate (HSO5-) with Bi/Fe0-5 (i.e., 81% by Bi/Fe0-5 and 98% by the Bi/Fe0-5/HSO5- system at 8 min of treatment). Interestingly, both Fe0 and Bi/Fe0-5 showed effective H2 production under dark conditions that reached 544 and 712 μM by Fe0 and Bi/Fe0-5, respectively, in 70 mL of aqueous solution containing 0.07 g (i.e., at 1 g L-1 concentration) of the catalyst at ambient temperature
    corecore