103 research outputs found

    Discernment of possible mechanisms of hepatotoxicity via biological processes over-represented by co-expressed genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatotoxicity is a form of liver injury caused by exposure to stressors. Genomic-based approaches have been used to detect changes in transcription in response to hepatotoxicants. However, there are no straightforward ways of using co-expressed genes anchored to a phenotype or constrained by the experimental design for discerning mechanisms of a biological response.</p> <p>Results</p> <p>Through the analysis of a gene expression dataset containing 318 liver samples from rats exposed to hepatotoxicants and leveraging alanine aminotransferase (ALT), a serum enzyme indicative of liver injury as the phenotypic marker, we identified biological processes and molecular pathways that may be associated with mechanisms of hepatotoxicity. Our analysis used an approach called Coherent Co-expression Biclustering (cc-Biclustering) for clustering a subset of genes through a coherent (consistency) measure within each group of samples representing a subset of experimental conditions. Supervised biclustering identified 87 genes co-expressed and correlated with ALT in all the samples exposed to the chemicals. None of the over-represented pathways related to liver injury. However, biclusters with subsets of samples exposed to one of the 7 hepatotoxicants, but not to a non-toxic isomer, contained co-expressed genes that represented pathways related to a stress response. Unsupervised biclustering of the data resulted in 1) four to five times more genes within the bicluster containing all the samples exposed to the chemicals, 2) biclusters with co-expression of genes that discerned 1,4 dichlorobenzene (a non-toxic isomer at low and mid doses) from the other chemicals, pathways and biological processes that underlie liver injury and 3) a bicluster with genes up-regulated in an early response to toxic exposure.</p> <p>Conclusion</p> <p>We obtained clusters of co-expressed genes that over-represented biological processes and molecular pathways related to hepatotoxicity in the rat. The mechanisms involved in the response of the liver to the exposure to 1,4-dichlorobenzene suggest non-genotoxicity whereas the exposure to the hepatotoxicants could be DNA damaging leading to overall genomic instability and activation of cell cycle check point signaling. In addition, key pathways and biological processes representative of an inflammatory response, energy production and apoptosis were impacted by the hepatotoxicant exposures that manifested liver injury in the rat.</p

    The Impact of Classification of Interest on Predictive Toxicogenomics

    Get PDF
    The era of toxicogenomics has introduced a new way of monitoring the effect of environmental stressors and toxicants on biological systems via quantification of changes in gene expression. Because the liver is one of the major organs for synthesis and secretion of substances which metabolize endogenous and exogenous materials, there has been a great deal of interest in elucidating predictive and mechanistic genomic markers of hepatotoxicity. This mini-review will bring context to a limited number of toxicogenomics studies which used genomics to evaluate the transcriptional changes in blood and liver in response to acetaminophen (APAP) or other liver toxicants, but differed according to the classification of interest (COI), i.e., the partitioning of the samples a priori according to a common toxicological characteristic. The toxicogenomics studies highlighted are characterized by a classification of either no/low vs. high APAP dose exposure, none vs. observed necrosis, and severity of necrosis. The overlap or lack thereof between the gene classifiers and the modulated biological processes that are elucidated will be discussed to enhance the understanding of the effect of the particular COI model and experimental design used for prediction

    Proceedings of the First International Conference on Toxicogenomics Integrated with Environmental Sciences (TIES-2007)

    Get PDF
    The First International Conference on Toxicogenomics Integrated with Environmental Sciences (TIES-2007) was held at the North Carolina State University McKimmon Center in Raleigh, North Carolina on October 25th and 26th, 2007. Based on the presentations at the conference and the commitment or interest of the presenters to contribute a manuscript of their research, we compiled this collection of articles as proceedings of the conference and an in-depth topical review of the utility of bioinformatics in the fields of toxicogenomics and environmental genomics

    Simultaneous clustering of gene expression data with clinical chemistry and pathological evaluations reveals phenotypic prototypes

    Get PDF
    BACKGROUND: Commonly employed clustering methods for analysis of gene expression data do not directly incorporate phenotypic data about the samples. Furthermore, clustering of samples with known phenotypes is typically performed in an informal fashion. The inability of clustering algorithms to incorporate biological data in the grouping process can limit proper interpretation of the data and its underlying biology. RESULTS: We present a more formal approach, the modk-prototypes algorithm, for clustering biological samples based on simultaneously considering microarray gene expression data and classes of known phenotypic variables such as clinical chemistry evaluations and histopathologic observations. The strategy involves constructing an objective function with the sum of the squared Euclidean distances for numeric microarray and clinical chemistry data and simple matching for histopathology categorical values in order to measure dissimilarity of the samples. Separate weighting terms are used for microarray, clinical chemistry and histopathology measurements to control the influence of each data domain on the clustering of the samples. The dynamic validity index for numeric data was modified with a category utility measure for determining the number of clusters in the data sets. A cluster's prototype, formed from the mean of the values for numeric features and the mode of the categorical values of all the samples in the group, is representative of the phenotype of the cluster members. The approach is shown to work well with a simulated mixed data set and two real data examples containing numeric and categorical data types. One from a heart disease study and another from acetaminophen (an analgesic) exposure in rat liver that causes centrilobular necrosis. CONCLUSION: The modk-prototypes algorithm partitioned the simulated data into clusters with samples in their respective class group and the heart disease samples into two groups (sick and buff denoting samples having pain type representative of angina and non-angina respectively) with an accuracy of 79%. This is on par with, or better than, the assignment accuracy of the heart disease samples by several well-known and successful clustering algorithms. Following modk-prototypes clustering of the acetaminophen-exposed samples, informative genes from the cluster prototypes were identified that are descriptive of, and phenotypically anchored to, levels of necrosis of the centrilobular region of the rat liver. The biological processes cell growth and/or maintenance, amine metabolism, and stress response were shown to discern between no and moderate levels of acetaminophen-induced centrilobular necrosis. The use of well-known and traditional measurements directly in the clustering provides some guarantee that the resulting clusters will be meaningfully interpretable

    A Comparison of the TempO-Seq S1500+ Platform to RNA-Seq and Microarray Using Rat Liver Mode of Action Samples

    Get PDF
    The TempO-SeqTM platform allows for targeted transcriptomic analysis and is currently used by many groups to perform high-throughput gene expression analysis. Herein we performed a comparison of gene expression characteristics measured using 45 purified RNA samples from the livers of rats exposed to chemicals that fall into one of five modes of action (MOAs). These samples have been previously evaluated using AffymetrixTM rat genome 230 2.0 microarrays and Illumina® whole transcriptome RNA-Seq. Comparison of these data with TempO-Seq analysis using the rat S1500+ beta gene set identified clear differences in the platforms related to signal to noise, root mean squared error, and/or sources of variability. Microarray and TempO-Seq captured the most variability in terms of MOA and chemical treatment whereas RNA-Seq had higher noise and larger differences between samples within a MOA. However, analysis of the data by hierarchical clustering, gene subnetwork connectivity and biological process representation of MOA-varying genes revealed that the samples clearly grouped by treatment as opposed to gene expression platform. Overall these findings demonstrate that the results from the TempO-Seq platform are consistent with findings on other more established approaches for measuring the genome-wide transcriptome

    Genes related to apoptosis predict necrosis of the liver as a phenotype observed in rats exposed to a compendium of hepatotoxicants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Some of the biochemical events that lead to necrosis of the liver are well-known. However, the pathogenesis of necrosis of the liver from exposure to hepatotoxicants is a complex biological response to the injury. We hypothesize that gene expression profiles can serve as a signature to predict the level of necrosis elicited by acute exposure of rats to a variety of hepatotoxicants and postulate that the expression profiles of the predictor genes in the signature can provide insight to some of the biological processes and molecular pathways that may be involved in the manifestation of necrosis of the rat liver.</p> <p>Results</p> <p>Rats were treated individually with one of seven known hepatotoxicants and were analyzed for gene expression by microarray. Liver samples were grouped by the level of necrosis exhibited in the tissue. Analysis of significantly differentially expressed genes between adjacent necrosis levels revealed that inflammation follows programmed cell death in response to the agents. Using a Random Forest classifier with feature selection, 21 informative genes were identified which achieved 90%, 80% and 60% prediction accuracies of necrosis against independent test data derived from the livers of rats exposed to acetaminophen, carbon tetrachloride, and allyl alcohol, respectively. Pathway and gene network analyses of the genes in the signature revealed several gene interactions suggestive of apoptosis as a process possibly involved in the manifestation of necrosis of the liver from exposure to the hepatotoxicants. Cytotoxic effects of TNF-α, as well as transcriptional regulation by JUN and TP53, and apoptosis-related genes possibly lead to necrosis.</p> <p>Conclusion</p> <p>The data analysis, gene selection and prediction approaches permitted grouping of the classes of rat liver samples exhibiting necrosis to improve the accuracy of predicting the level of necrosis as a phenotypic end-point observed from the exposure. The strategy, along with pathway analysis and gene network reconstruction, led to the identification of 1) expression profiles of genes as a signature of necrosis and 2) perturbed regulatory processes that exhibited biological relevance to the manifestation of necrosis from exposure of rat livers to the compendium of hepatotoxicants.</p

    Extracting gene expression patterns and identifying co-expressed genes from microarray data reveals biologically responsive processes

    Get PDF
    Abstract Background A common observation in the analysis of gene expression data is that many genes display similarity in their expression patterns and therefore appear to be co-regulated. However, the variation associated with microarray data and the complexity of the experimental designs make the acquisition of co-expressed genes a challenge. We developed a novel method for Extracting microarray gene expression Patterns and Identifying co-expressed Genes, designated as EPIG. The approach utilizes the underlying structure of gene expression data to extract patterns and identify co-expressed genes that are responsive to experimental conditions. Results Through evaluation of the correlations among profiles, the magnitude of variation in gene expression profiles, and profile signal-to-noise ratio's, EPIG extracts a set of patterns representing co-expressed genes. The method is shown to work well with a simulated data set and microarray data obtained from time-series studies of dauer recovery and L1 starvation in C. elegans and after ultraviolet (UV) or ionizing radiation (IR)-induced DNA damage in diploid human fibroblasts. With the simulated data set, EPIG extracted the appropriate number of patterns which were more stable and homogeneous than the set of patterns that were determined using the CLICK or CAST clustering algorithms. However, CLICK performed better than EPIG and CAST with respect to the average correlation between clusters/patterns of the simulated data. With real biological data, EPIG extracted more dauer-specific patterns than CLICK. Furthermore, analysis of the IR/UV data revealed 18 unique patterns and 2661 genes out of approximately 17,000 that were identified as significantly expressed and categorized to the patterns by EPIG. The time-dependent patterns displayed similar and dissimilar responses between IR and UV treatments. Gene Ontology analysis applied to each pattern-related subset of co-expressed genes revealed underlying biological processes affected by IR- and/or UV- induced DNA damage. Conclusion EPIG competed with CLICK and performed better than CAST in extracting patterns from simulated data. EPIG extracted more biological informative patterns and co-expressed genes from both C. elegans and IR/UV-treated human fibroblasts. Using Gene Ontology analysis of the genes in the patterns extracted by EPIG, several key biological categories related to p53-dependent cell cycle control were revealed from the IR/UV data. Among them were mitotic cell cycle, DNA replication, DNA repair, cell cycle checkpoint, and G0-like status transition. EPIG can be applied to data sets from a variety of experimental designs
    corecore