9,696 research outputs found

    Time-Temperature Superposition of Structural Relaxation in a Viscous Metallic Liquid

    Get PDF
    Bulk metallic glass-forming Pd40Ni10Cu30P20 has been investigated in its equilibrium liquid by quasielastic neutron scattering. The quasielastic signal exhibits a structural relaxation as known from nonmetallic viscous liquids. Even well above the melting point, the structural relaxation is nonexponential and obeys a universal time-temperature superposition. From the mean relaxation times average diffusivities have been determined, resulting in values on a 10^-10 m^2 s^-1 scale, 3 orders of magnitude slower than in simple metallic liquids

    Quantum Mechanics as a Framework for Dealing with Uncertainty

    Full text link
    Quantum uncertainty is described here in two guises: indeterminacy with its concomitant indeterminism of measurement outcomes, and fuzziness, or unsharpness. Both features were long seen as obstructions of experimental possibilities that were available in the realm of classical physics. The birth of quantum information science was due to the realization that such obstructions can be turned into powerful resources. Here we review how the utilization of quantum fuzziness makes room for a notion of approximate joint measurement of noncommuting observables. We also show how from a classical perspective quantum uncertainty is due to a limitation of measurability reflected in a fuzzy event structure -- all quantum events are fundamentally unsharp.Comment: Plenary Lecture, Central European Workshop on Quantum Optics, Turku 2009

    Maintaining Quantum Coherence in the Presence of Noise through State Monitoring

    Full text link
    Unsharp POVM measurements allow the estimation and tracking of quantum wavefunctions in real-time with minimal disruption of the dynamics. Here we demonstrate that high fidelity state monitoring, and hence quantum control, is possible even in the presence of classical dephasing and amplitude noise, by simulating such measurements on a two-level system undergoing Rabi oscillations. Finite estimation fidelity is found to persist indefinitely long after the decoherence times set by the noise fields in the absence of measurement.Comment: 5 pages, 4 figure

    Efficient thin film heating element takes minimum space

    Get PDF
    Light, thin-film heating element is formed by vacuum deposition of metal onto a nonconductive surface to be heated. This small-sized heater has a very fast response time

    Uncertainty reconciles complementarity with joint measurability

    Full text link
    The fundamental principles of complementarity and uncertainty are shown to be related to the possibility of joint unsharp measurements of pairs of noncommuting quantum observables. A new joint measurement scheme for complementary observables is proposed. The measured observables are represented as positive operator valued measures (POVMs), whose intrinsic fuzziness parameters are found to satisfy an intriguing pay-off relation reflecting the complementarity. At the same time, this relation represents an instance of a Heisenberg uncertainty relation for measurement imprecisions. A model-independent consideration show that this uncertainty relation is logically connected with the joint measurability of the POVMs in question.Comment: 4 pages, RevTeX. Title of previous version: "Complementarity and uncertainty - entangled in joint path-interference measurements". This new version focuses on the "measurement uncertainty relation" and its role, disentangling this issue from the special context of path interference duality. See also http://www.vjquantuminfo.org (October 2003

    Decoherence-assisted transport and quantum criticalities

    Get PDF
    We study the dynamics of a two-level quantum system interacting with an external environment that takes the form of an XY spin chain in the presence of an external magnetic field. While the presence of the bath itself can enhance the transition probability from the lower level to the upper level of the system, we show that this noise-assisted phenomenon is sensitive to a change of the quantum phase of the environment. The derivative of the transition probability displays a maximum in correspondence with the critical value of the applied field both in the case of isotropic and anisotropic chains

    Protecting subspaces by acting on the outside

    Full text link
    Many quantum control tasks aim at manipulating the state of a quantum mechanical system within a finite subspace of states. However, couplings to the outside are often inevitable. Here we discuss strategies which keep the system in the controlled subspace by applying strong interactions onto the outside. This is done by drawing analogies to simple toy models and to the quantum Zeno effect. Special attention is paid to the constructive use of dissipation in the protection of subspaces.Comment: 16 pages, 10 figure

    Uncertainty Relations for Positive Operator Valued Measures

    Get PDF
    How much unavoidable randomness is generated by a Positive Operator Valued Measure (POVM)? We address this question using two complementary approaches. First we study the variance of a real variable associated to the POVM outcomes. In this context we introduce an uncertainty operator which measures how much additional noise is introduced by carrying out a POVM rather than a von Neumann measurement. We illustrate this first approach by studying the variances of joint estimates of \sigma_x and \sigma_z for spin 1/2 particles. We show that for unbiased measurements the sum of these variances is lower bounded by 1. In our second approach we study the entropy of the POVM outcomes. In particular we try to establish lower bounds on the entropy of the POVM outcomes. We illustrate this second approach by examples.Comment: 5 pages, minor modifications and clarification

    Processing of carbon-fiber-reinforced Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 bulk metallic glass composites

    Get PDF
    Carbon-fiber-reinforced bulk metallic glass composites are produced by infiltrating liquid Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 into carbon fiber bundles with diameter of the individual fiber of 5 mum. Reactive wetting occurs by the formation of a ZrC layer around the fibers. This results in a composite with a homogeneous fiber distribution. The volume fraction of the fibers is about 50% and the density of the composite amounts to 4.0 g/cm(^3)

    The Dynamic Transition of Protein Hydration Water

    Get PDF
    Thin layers of water on biomolecular and other nanostructured surfaces can be supercooled to temperatures not accessible with bulk water. Chen et al. [PNAS 103, 9012 (2006)] suggested that anomalies near 220 K observed by quasi-elastic neutron scattering can be explained by a hidden critical point of bulk water. Based on more sensitive measurements of water on perdeuterated phycocyanin, using the new neutron backscattering spectrometer SPHERES, and an improved data analysis, we present results that show no sign of such a fragile-to-strong transition. The inflection of the elastic intensity at 220 K has a dynamic origin that is compatible with a calorimetric glass transition at 170 K. The temperature dependence of the relaxation times is highly sensitive to data evaluation; it can be brought into perfect agreement with the results of other techniques, without any anomaly.Comment: 4 pages, 3 figures. Phys. Rev. Lett. (in press
    corecore