4,526 research outputs found
Position Reconstruction in Drift Chambers operated with Xe, CO2 (15%)
We present measurements of position and angular resolution of drift chambers
operated with a Xe,CO(15%) mixture. The results are compared to Monte Carlo
simulations and important systematic effects, in particular the dispersive
nature of the absorption of transition radiation and non-linearities, are
discussed. The measurements were carried out with prototype drift chambers of
the ALICE Transition Radiation Detector, but our findings can be generalized to
other drift chambers with similar geometry, where the electron drift is
perpendicular to the wire planes.Comment: 30 pages, 18 figure
Measurement of Spin Correlation Parameters A, A, and A_ at 2.1 GeV in Proton-Proton Elastic Scattering
At the Cooler Synchrotron COSY/J\"ulich spin correlation parameters in
elastic proton-proton (pp) scattering have been measured with a 2.11 GeV
polarized proton beam and a polarized hydrogen atomic beam target. We report
results for A, A, and A_ for c.m. scattering angles between
30 and 90. Our data on A -- the first measurement of this
observable above 800 MeV -- clearly disagrees with predictions of available of
pp scattering phase shift solutions while A and A_ are reproduced
reasonably well. We show that in the direct reconstruction of the scattering
amplitudes from the body of available pp elastic scattering data at 2.1 GeV the
number of possible solutions is considerably reduced.Comment: 4 pages, 4 figure
A method for collective excitation of Bose-Einstein condensate
It is shown that by an appropriate modification of the trapping potential one
may create collective excitation in cold atom Bose-Einstein condensate. The
proposed method is complementary to earlier suggestions. It seems to be
feasible experimentally --- it requires only a proper change in time of the
potential in atomic traps, as realized in laboratories already.Comment: 4 pages, 4 figures; major revision, several references added,
interacting particles case adde
Transition Radiation Spectra of Electrons from 1 to 10 GeV/c in Regular and Irregular Radiators
We present measurements of the spectral distribution of transition radiation
generated by electrons of momentum 1 to 10 GeV/c in different radiator types.
We investigate periodic foil radiators and irregular foam and fiber materials.
The transition radiation photons are detected by prototypes of the drift
chambers to be used in the Transition Radiation Detector (TRD) of the ALICE
experiment at CERN, which are filled with a Xe, CO2 (15 %) mixture. The
measurements are compared to simulations in order to enhance the quantitative
understanding of transition radiation production, in particular the momentum
dependence of the transition radiation yield.Comment: 18 pages, 15 figures, submitted to Nucl. Instr. Meth. Phys. Res.
Observation of p-wave Threshold Law Using Evaporatively Cooled Fermionic Atoms
We have measured independently both s-wave and p-wave cross-dimensional
thermalization rates for ultracold potassium-40 atoms held in a magnetic trap.
These measurements reveal that this fermionic isotope has a large positive
s-wave triplet scattering length in addition to a low temperature p-wave shape
resonance. We have observed directly the p-wave threshold law which, combined
with the Fermi statistics, dramatically suppresses elastic collision rates at
low temperatures. In addition, we present initial evaporative cooling results
that make possible these collision measurements and are a precursor to
achieving quantum degeneracy in this neutral, low-density Fermi system.Comment: 5 pages, 3 figures, 1 tabl
Etched distributed Bragg reflectors as three-dimensional photonic crystals: photonic bands and density of states
The photonic band dispersion and density of states (DOS) are calculated for
the three-dimensional (3D) hexagonal structure corresponding to a distributed
Bragg reflector patterned with a 2D triangular lattice of circular holes.
Results for the Si/SiO and GaAs/AlGaAs systems determine the optimal
parameters for which a gap in the 2D plane occurs and overlaps the 1D gap of
the multilayer. The DOS is considerably reduced in correspondence with the
overlap of 2D and 1D gaps. Also, the local density of states (i.e., the DOS
weighted with the squared electric field at a given point) has strong
variations depending on the position. Both results imply substantial changes of
spontaneous emission rates and patterns for a local emitter embedded in the
structure and make this system attractive for the fabrication of a 3D photonic
crystal with controlled radiative properties.Comment: 8 pages, 5 figures; to appear in Phys. Rev.
Quantum Superposition States of Bose-Einstein Condensates
We propose a scheme to create a macroscopic ``Sch\"odinger cat'' state formed
by two interacting Bose condensates. In analogy with quantum optics, where the
control and engineering of quantum states can be maintained to a large extend,
we consider the present scheme to be an example of quantum atom optics at work.Comment: 24 pages, 6 figure
Spacetime states and covariant quantum theory
In it's usual presentation, classical mechanics appears to give time a very
special role. But it is well known that mechanics can be formulated so as to
treat the time variable on the same footing as the other variables in the
extended configuration space. Such covariant formulations are natural for
relativistic gravitational systems, where general covariance conflicts with the
notion of a preferred physical-time variable. The standard presentation of
quantum mechanics, in turns, gives again time a very special role, raising well
known difficulties for quantum gravity. Is there a covariant form of
(canonical) quantum mechanics? We observe that the preferred role of time in
quantum theory is the consequence of an idealization: that measurements are
instantaneous. Canonical quantum theory can be given a covariant form by
dropping this idealization. States prepared by non-instantaneous measurements
are described by "spacetime smeared states". The theory can be formulated in
terms of these states, without making any reference to a special time variable.
The quantum dynamics is expressed in terms of the propagator, an object
covariantly defined on the extended configuration space.Comment: 20 pages, no figures. Revision: minor corrections and references
adde
Stability and collective excitations of a two-component Bose-condensed gas: a moment approach
The dynamics of a two-component dilute Bose gas of atoms at zero temperature
is described in the mean field approximation by a two-component
Gross-Pitaevskii Equation. We solve this equation assuming a Gaussian shape for
the wavefunction, where the free parameters of the trial wavefunction are
determined using a moment method. We derive equilibrium states and the phase
diagrams for the stability for positive and negative s-wave scattering lengths,
and obtain the low energy excitation frequencies corresponding to the
collective motion of the two Bose condensates.Comment: 7 pages, 6 figure
- …