1,371 research outputs found

    Interrupting the social amplification of risk process: a case study in collective emissions reduction

    Get PDF
    One of the main approaches we have for studying the progressive divergence of understandings around a risk issue is that of social risk amplification. This article describes a case study of a particular environmental contaminant, a chemical flame retardant that could be interpreted as having produced a risk amplifying process. It describes in particular how a group of industrial organizations acted collectively to reduce emissions of this contaminant, in an apparent attempt to avert regulation and boycotts—that is, to intercept the social amplification process and avoid its secondary effects. The aim of the study was to investigate the constitutive qualities of this collective action: the qualities that defined it and made it effective in the eyes of those involved. These include institutionalisation and independence, the ability to confer individual as well as collective benefit, the capacity to attract (rather than avoid) criticism, and the ‘branding’ that helps communicate what otherwise appear to be a set of unconnected, local actions. Although the risk amplification framework has been criticised for implying that there is some externally given risk level that is subsequently amplified, it does appear to capture the mentality of actors involved in issues of this kind. They talk and act as though they believe they are participants in a risk amplification process

    Altitudinal Shifts of the Native and Introduced Flora of California in the Context of 20th-Century Warming

    Get PDF
    Aim: The differential responses of plant species to climate change are of great interest and grave concern for scientists and conservationists. One underexploited resource for better understanding these changes are the records held by herbaria. Using these records to assess the responses of different groups of species across the entire flora of California, we sought to quantify the magnitude of species elevational shifts, to measure differences in shifts among functional groups and between native and introduced species, and to evaluate whether these shifts were related to the conservation of thermal niches. Location: California. Methods: To characterize these shifts in California, we used 681,609 georeferenced herbarium records to estimate mean shifts in elevational and climatic space of 4426 plant taxa.We developed and employed a statistical method to robustly analyse the data represented in these records. Results: We found that 15% of all taxa in California have ranges that have shifted upward over the past century. There are significant differences between range shifts of taxa with different naturalization statuses: 12% of endemic taxa show significant upward range shifts, while a greater proportion (27%) of introduced taxa have shifted upward.We found significant differences between the proportion of significant range shifts across taxa with different seed sizes, but did not find evidence for differences in shift based on life-form (annual versus perennial, herbaceous versus woody). Main conclusions: Our analyses suggest that introduced species have disproportionately expanded their ranges upward in elevation over the past century when compared with native species.While these shifts in introduced species may not be exclusively driven by climate, they highlight the importance of considering the interacting factors of climate-driven range shifts and invasion to understand how floras are responding in the face of anthropogenic change

    Full regularity for a C*-algebra of the Canonical Commutation Relations. (Erratum added)

    Full text link
    The Weyl algebra,- the usual C*-algebra employed to model the canonical commutation relations (CCRs), has a well-known defect in that it has a large number of representations which are not regular and these cannot model physical fields. Here, we construct explicitly a C*-algebra which can reproduce the CCRs of a countably dimensional symplectic space (S,B) and such that its representation set is exactly the full set of regular representations of the CCRs. This construction uses Blackadar's version of infinite tensor products of nonunital C*-algebras, and it produces a "host algebra" (i.e. a generalised group algebra, explained below) for the \sigma-representation theory of the abelian group S where \sigma(.,.):=e^{iB(.,.)/2}. As an easy application, it then follows that for every regular representation of the Weyl algebra of (S,B) on a separable Hilbert space, there is a direct integral decomposition of it into irreducible regular representations (a known result). An Erratum for this paper is added at the end.Comment: An erratum was added to the original pape

    Covariance systems

    Full text link
    We introduce new definitions of states and of representations of covariance systems. The GNS-construction is generalized to this context. It associates a representation with each state of the covariance system. Next, states are extended to states of an appropriate covariance algebra. Two applications are given. We describe a nonrelativistic quantum particle, and we give a simple description of the quantum spacetime model introduced by Doplicher et al.Comment: latex with ams-latex, 23 page

    Synergistic effects of the invasive Chinese tallow (Triadica sebifera) and climate change on aquatic amphibian survival

    Get PDF
    Changes in climate and the introduction of invasive species are two major stressors to amphibians, although little is known about the interaction between these two factors with regard to impacts on amphibians. We focused our study on an invasive tree species, the Chinese tallow (Triadica sebifera), that annually sheds its leaves and produces leaf litter that is known to negatively impact aquatic amphibian survival. The purpose of our research was to determine whether the timing of leaf fall from Chinese tallow and the timing of amphibian breeding (determined by weather) influence survival of amphibian larvae. We simulated a range of winter weather scenarios, ranging from cold to warm, by altering the relative timing of when leaf litter and amphibian larvae were introduced into aquatic mesocosms. Our results indicate that amphibian larvae survival was greatly affected by the length of time Chinese tallow leaf litter decomposes in water prior to the introduction of the larvae. Larvae in treatments simulating warm winters (early amphibian breeding) were introduced to the mesocosms early in the aquatic decomposition process of the leaf litter and had significantly lower survival compared with cold winters (late amphibian breeding), likely due to significantly lower dissolved oxygen levels. Shifts to earlier breeding phenology, linked to warming climate, have already been observed in many amphibian taxa, and with most climate models predicting a significant warming trend over the next century, the trend toward earlier breeding should continue if not increase. Our results strongly suggest that a warming climate can interact with the effects of invasive plant species, in ways we have not previously considered, to reduce the survival of an already declining group of organisms

    The Prevalence of Neck and Shoulder Symptoms and Associations with Comorbidities and Disability: The Johnston County Osteoarthritis Project

    Get PDF
    Neck and shoulder pain are common but underreported by older people, raising important questions of frequency, medical comorbidities, gender and racial disparities and functional impact associated with neck and shoulder symptoms in elders, which we examined in this analysis
    • …
    corecore