105 research outputs found

    Permeation characteristics of gramicidin conformers

    Get PDF
    To investigate the molecular origin of decreased conductance in variant gramicidin channels, we examined the current-voltage (IV) characteristics of single Val1-gramicidin A channels. Unlike standard channels, all variant channels showed pronounced rectification even though bathing solutions were symmetrical. Moreover, channels of lower conductance consistently showed more pronounced rectification. Analysis within the framework of a three-barrier, two-site, single-filing model indicates that the shape of the variant channel IVs could be best explained by an increase in binding affinity near one of the two channel entrances. This conclusion was further tested by characterizing single channel IVs in bi-ionic solutions having different cationic species at each channel entrance. In Cs/Na bi-ionic solutions, reversal potentials of variant channels often differed by a small but significant amount from those of standard channels. When a membrane potential was applied, the ionic currents tended to be reduced more when flowing from the Na+ side than the Cs+ side. These observations support the conclusion that variant channels have increased binding affinity at one end of the channel. Furthermore, H+ currents were increased while Ag+ currents were unaltered for most variant channels exhibiting decreased Na+ or Cs+ currents. The increased H+ conductance argues against long-range coulombic forces as the basis for decreased Na+ or Cs+ conductance while the normal Ag+ conductance suggests that the binding site field strength increases by a change in carbonyl geometry at the channel entrance

    Structure-Activity Relationships of Influenza a M2 Inhibitors

    Get PDF

    Fluorescence anisotropy of diphenylhexatriene and its cationic Trimethylamino derivative in liquid dipalmitoylphosphatidylcholine liposomes: opposing responses to isoflurane

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mechanism of action of volatile general anesthetics has not yet been resolved. In order to identify the effects of isoflurane on the membrane, we measured the steady-state anisotropy of two fluorescent probes that reside at different depths. Incorporation of anesthetic was confirmed by shifting of the main phase transition temperature.</p> <p>Results</p> <p>In liquid crystalline dipalmitoylphosphatidylcholine liposomes, isoflurane (7-25 mM in the bath) increases trimethylammonium-diphenylhexatriene fluorescence anisotropy by ~0.02 units and decreases diphenylhexatriene anisotropy by the same amount.</p> <p>Conclusions</p> <p>The anisotropy data suggest that isoflurane decreases non-axial dye mobility in the headgroup region, while increasing it in the tail region. We propose that these results reflect changes in the lateral pressure profile of the membrane.</p

    Copper Complexes as Influenza Antivirals: Reduced Zebrafish Toxicity

    Get PDF
    Copper complexes have previously been developed to target His37 in influenza M2 and are effective blockers of both the wild type (WT) and the amantadine-resistant M2S31N. Here, we report that the complexes were much less toxic to zebrafish than CuCl2. In addition, we characterized albumin binding, mutagenicity, and virus resistance formation of these metal complexes, and employed steered molecular dynamics simulations to explore whether the complexes would fit in M2. We also examined their anti-viral efficacy in a multi-generation cell culture assay to extend the previous work with an initial-infection assay, discovering that this is complicated by cell culture medium components. The number of copper ions binding to bovine serum albumin (BSA) correlates well with the number of surface histidines and BSA binding affinity is low compared to M2. No mutagenicity of the complexes was observed when compared to sodium azide. After 10 passages of virus in MDCK culture, the EC50 was unchanged for each of the complexes, i.e. resistance did not develop. The simulations revealed that the compounds fit well in the M2 channel, much like amantadine

    Model Channel Ion Currents in NaCl - SPC/E Solution with Applied-Field Molecular Dynamics

    Get PDF
    Using periodic boundary conditions and a constant applied field, we have simulated current flow through an 8.125 Angstrom internal diameter, rigid, atomistic channel with polar walls in a rigid membrane using explicit ions and SPC/E water. Channel and bath currents were computed from ten 10-ns trajectories for each of 10 different conditions of concentration and applied voltage. An electric field was applied uniformly throughout the system to all mobile atoms. On average, the resultant net electric field falls primarily across the membrane channel, as expected for two conductive baths separated by a membrane capacitance. The channel is rarely occupied by more than one ion. Current-voltage relations are concentration-dependent and superlinear at high concentrations.Comment: Accepted for publication in Biophysical Journa

    Low conductance gramicidin A channels are head-to-head dimers of beta 6.3-helices.

    Get PDF
    Weakly conductive, atypical channels were observed to form from highly purified Val1-gramicidin A in planar lipid bilayer membranes. The structure of these low-conductance channels (minis) was investigated by a detailed study of their channel forming characteristics. The possibility that minis originate from primary structural analogs or degradation products of gramicidin was considered and ruled out. In particular, spontaneous conductance changes in single channels demonstrated that minis can derive directly and reversibly from "standard" channels having the most common conductance level. The fraction of channels which are minis does not vary with changes in membrane gramicidin concentration, indicating that mini and standard channels have the same molecularity, that is, both are dimers. The mean lifetime of mini channels is only slightly shorter than that of standard channels, indicating that the six hydrogen bonds that stabilize the head-to-head dimer are minimally affected in minis. The fraction of channels which are minis is unaffected by the ionic strength, ionic composition, or pH of the bathing solution; it is also unaffected by the lipid composition of the bilayer. These findings are consistent with the hypothesis that minis arise from minor changes in the conformation of the Val1-gramicidin A molecule near the channel entrance or exit

    The permeation properties of small organic cations in gramicidin A channels.

    Get PDF
    The conductance properties of organic cations in single gramicidin A channels were studied using planar lipid bilayers. From measurements at 10 mM and at 27 mV the overall selectivity sequence was found to be NH4+ > K+ > hydrazinium > formamidinium > Na+ > methylammonium, which corresponds to Eisenman polyatomic cation sequence X'. Methylammonium and formamidinium exhibit self block, suggesting multiple occupancy and single filing. Formamidinium has an apparent dissociation constant (which is similar to those of alkali metal cations) for the first ion being 22 mM from the Eadie-Hofstee plot (G0 vs. G0/C), 12 mM from the rate constants of a three-step kinetic model. The rate-limiting step for formamidinium is translocation judging from supralinear I-V relations at low concentrations. 1 M formamidinium solutions yields exceptionally long single channel lifetimes, 20-fold longer than methylammonium, which yields lifetimes similar to those found with alkali metal cations. The average lifetime in formamidinium solution significantly decreases with increasing voltage up to 100 mV but is relatively voltage independent between 100 and 200 mV. At lower voltages (< or = 100 mV), the temperature and concentration dependences of the average lifetime of formamidinium were steep. At very low salt concentrations (0.01 M, 100 mV), there was no significant difference in average lifetime from that formed with 0.01 M methylammonium or hydrazinium. We conclude that formamidinium very effectively stabilizes the dimeric channel while inside the channel and speculate that it does so by affecting tryptophan-reorientation or tryptophan-lipid interactions at binding sites
    corecore