26,255 research outputs found
Will the Patient-Centered Medical Home Transform the Delivery of Health Care?
Explores various definitions of the medical home model, its components, rationale, effect on primary care, issues for implementation such as costs and payment methods, evidence of effectiveness, and healthcare reform provisions promoting it
Shocked H2 and Fe+ Dynamics in the Orion Bullets
Observations of H2 velocity profiles in the two most clearly defined Orion
bullets are extremely difficult to reconcile with existing steady-state shock
models. We have observed [FeII] 1.644um velocity profiles of selected bullets
and H2 1-0 S(1) 2.122um velocity profiles for a series of positions along and
across the corresponding bow-shaped shock fronts driven into the surrounding
molecular cloud. Integrated [FeII] velocity profiles of the brightest bullets
are consistent with theoretical bow shock predictions. However, observations of
broad, singly-peaked H2 1-0 S(1) profiles at a range of positions within the
most clearly resolved bullet wakes are not consistent with molecular shock
modelling. A uniform, collisionally broadened background component which
pervades the region in both tracers is inconsistent with fluorescence due to
the ionizing radiation of the Trapezium stars alone.Comment: 20 pages including 18 figures, published in MNRA
The inexorable resistance of inertia determines the initial regime of drop coalescence
Drop coalescence is central to diverse processes involving dispersions of
drops in industrial, engineering and scientific realms. During coalescence, two
drops first touch and then merge as the liquid neck connecting them grows from
initially microscopic scales to a size comparable to the drop diameters. The
curvature of the interface is infinite at the point where the drops first make
contact, and the flows that ensue as the two drops coalesce are intimately
coupled to this singularity in the dynamics. Conventionally, this process has
been thought to have just two dynamical regimes: a viscous and an inertial
regime with a crossover region between them. We use experiments and simulations
to reveal that a third regime, one that describes the initial dynamics of
coalescence for all drop viscosities, has been missed. An argument based on
force balance allows the construction of a new coalescence phase diagram
Quadrilateral-octagon coordinates for almost normal surfaces
Normal and almost normal surfaces are essential tools for algorithmic
3-manifold topology, but to use them requires exponentially slow enumeration
algorithms in a high-dimensional vector space. The quadrilateral coordinates of
Tollefson alleviate this problem considerably for normal surfaces, by reducing
the dimension of this vector space from 7n to 3n (where n is the complexity of
the underlying triangulation). Here we develop an analogous theory for
octagonal almost normal surfaces, using quadrilateral and octagon coordinates
to reduce this dimension from 10n to 6n. As an application, we show that
quadrilateral-octagon coordinates can be used exclusively in the streamlined
3-sphere recognition algorithm of Jaco, Rubinstein and Thompson, reducing
experimental running times by factors of thousands. We also introduce joint
coordinates, a system with only 3n dimensions for octagonal almost normal
surfaces that has appealing geometric properties.Comment: 34 pages, 20 figures; v2: Simplified the proof of Theorem 4.5 using
cohomology, plus other minor changes; v3: Minor housekeepin
Irrigation and drainage performance assessment: practical guidelines
Irrigation management / Drainage / Performance evaluation / Performance indexes / Evapotranspiration / Precipitation / Water balance / Participatory rural appraisal / Databases / Simulation
Statistical modelling of transcript profiles of differentially regulated genes
Background: The vast quantities of gene expression profiling data produced in microarray studies, and
the more precise quantitative PCR, are often not statistically analysed to their full potential. Previous
studies have summarised gene expression profiles using simple descriptive statistics, basic analysis of
variance (ANOVA) and the clustering of genes based on simple models fitted to their expression profiles
over time. We report the novel application of statistical non-linear regression modelling techniques to
describe the shapes of expression profiles for the fungus Agaricus bisporus, quantified by PCR, and for E.
coli and Rattus norvegicus, using microarray technology. The use of parametric non-linear regression models
provides a more precise description of expression profiles, reducing the "noise" of the raw data to
produce a clear "signal" given by the fitted curve, and describing each profile with a small number of
biologically interpretable parameters. This approach then allows the direct comparison and clustering of
the shapes of response patterns between genes and potentially enables a greater exploration and
interpretation of the biological processes driving gene expression.
Results: Quantitative reverse transcriptase PCR-derived time-course data of genes were modelled. "Splitline"
or "broken-stick" regression identified the initial time of gene up-regulation, enabling the classification
of genes into those with primary and secondary responses. Five-day profiles were modelled using the
biologically-oriented, critical exponential curve, y(t) = A + (B + Ct)Rt + ε. This non-linear regression
approach allowed the expression patterns for different genes to be compared in terms of curve shape,
time of maximal transcript level and the decline and asymptotic response levels. Three distinct regulatory
patterns were identified for the five genes studied. Applying the regression modelling approach to
microarray-derived time course data allowed 11% of the Escherichia coli features to be fitted by an
exponential function, and 25% of the Rattus norvegicus features could be described by the critical
exponential model, all with statistical significance of p < 0.05.
Conclusion: The statistical non-linear regression approaches presented in this study provide detailed
biologically oriented descriptions of individual gene expression profiles, using biologically variable data to
generate a set of defining parameters. These approaches have application to the modelling and greater
interpretation of profiles obtained across a wide range of platforms, such as microarrays. Through careful
choice of appropriate model forms, such statistical regression approaches allow an improved comparison
of gene expression profiles, and may provide an approach for the greater understanding of common
regulatory mechanisms between genes
Using cognitive psychology and neuroscience to better inform sound system design at large musical events
Large musical events have become increasingly popular in the last fifty years. It is now not uncommon to have indoor shows in excess of 10,000 people, and open-air events of 30,000 people or more. These events, nevertheless, present technical challenges that have only begun to be solved in the last hundred years, with the introduction of sound reinforcement systems, electric lighting and now video/display technologies. However, these technologies present an artificial link to the performance that requires an understanding of both the audience's expectations as well as the technologies' abilities and limitations. Although many of these abilities and limitations are well documented, the audience's responses to them are less so. This paper introduces research primarily into audience auditory responses but at a subconscious level. By investigating these responses, it is hoped to find a commonality amongst audiences, from which better-informed metrics can be derived
- …