20,453 research outputs found
First Principles Calculations of Ionic Vibrational Frequencies in PbMg1/3Nb2/3O3
Lattice dynamics for several ordered supercells with composition
PbMg1/3Nb2/3O (PMN) were calculated with first-principles frozen phonon
methods. Nominal symmetries of the supercells studied are reduced by lattice
instabilities. Lattice modes corresponding to these instabilities, equilibrium
ionic positions, and infrared (IR) reflectivity spectra are reported.Comment: 6 pages; Fundamental physics of Ferroelectrics 200
First principles phase diagram calculations for the wurtzite-structure systems AlN–GaN, GaN–InN, and AlN–InN
First principles phase diagram calculations were performed for the wurtzite-structure quasibinary systems AlN–GaN, GaN–InN, and AlN–InN. Cluster expansion Hamiltonians that excluded, and included, excess vibrational contributions to the free energy, Fvib, were evaluated. Miscibility gaps are predicted for all three quasibinaries, with consolute points, (XC,TC), for AlN–GaN, GaN–InN, and AlN–InN equal to (0.50, 305 K), (0.50, 1850 K), and (0.50, 2830 K) without Fvib, and (0.40, 247 K), (0.50, 1620 K), and (0.50, 2600 K) with Fvib, respectively. In spite of the very different ionic radii of Al, Ga, and In, the GaN–InN and AlN–GaN diagrams are predicted to be approximately symmetric
MODELING FARM AND OFF-FARM ECONOMIC LINKAGES TO ANALYZE THE IMPACTS OF AN AREA-WIDE INSECT MANAGEMENT PROGRAM ON A REGIONAL ECONOMY
This study evaluated the impacts of the boll weevil eradication program at the farm level and on the west Tennessee region. Budgets, an acreage response model, and an input-output model were used to evaluate direct and indirect program impacts. The program generates small but positive economic benefits for the region.Crop Production/Industries,
First-principles phase diagram calculations for the HfC–TiC, ZrC–TiC, and HfC–ZrC solid solutions
We report first-principles phase diagram calculations for the binary systems HfC–TiC, TiC–ZrC, and HfC–ZrC. Formation energies for superstructures of various bulk compositions were computed with a plane-wave pseudopotential method. They in turn were used as a basis for fitting cluster expansion Hamiltonians, both with and without approximations for excess vibrational free energies. Significant miscibility gaps are predicted for the systems TiC–ZrC and HfC–TiC, with consolute temperatures in excess of 2000 K. The HfC–ZrC system is predicted to be completely miscibile down to 185 K. Reductions in consolute temperature due to excess vibrational free energy are estimated to be ~7%, ~20%, and ~0%, for HfC–TiC, TiC–ZrC, and HfC–ZrC, respectively. Predicted miscibility gaps are symmetric for HfC–ZrC, almost symmetric for HfC–TiC and asymmetric for TiC–ZrC
Effects of Vacancies on Properties of Relaxor Ferroelectrics: a First-Principles Study
A first-principles-based model is developed to investigate the influence of
lead vacancies on the properties of relaxor ferroelectric Pb(Sc1/2Nb1/2)O3
(PSN). Lead vacancies generate large, inhomogeneous, electric fields that
reduce barriers between energy minima for different polarization directions.
This naturally explains why relaxors with significant lead vacancy
concentrations have broadened dielectric peaks at lower temperatures, and why
lead vacancies smear properties in the neighborhood of the ferroelectric
transition in PSN. We also reconsider the conventional wisdom that lead
vacancies reduce the magnitude of dielectric response.Comment: 11 pages, 1 figur
Quadrilateral-octagon coordinates for almost normal surfaces
Normal and almost normal surfaces are essential tools for algorithmic
3-manifold topology, but to use them requires exponentially slow enumeration
algorithms in a high-dimensional vector space. The quadrilateral coordinates of
Tollefson alleviate this problem considerably for normal surfaces, by reducing
the dimension of this vector space from 7n to 3n (where n is the complexity of
the underlying triangulation). Here we develop an analogous theory for
octagonal almost normal surfaces, using quadrilateral and octagon coordinates
to reduce this dimension from 10n to 6n. As an application, we show that
quadrilateral-octagon coordinates can be used exclusively in the streamlined
3-sphere recognition algorithm of Jaco, Rubinstein and Thompson, reducing
experimental running times by factors of thousands. We also introduce joint
coordinates, a system with only 3n dimensions for octagonal almost normal
surfaces that has appealing geometric properties.Comment: 34 pages, 20 figures; v2: Simplified the proof of Theorem 4.5 using
cohomology, plus other minor changes; v3: Minor housekeepin
Soft versus Hard Dynamics for Field-driven Solid-on-Solid Interfaces
Analytical arguments and dynamic Monte Carlo simulations show that the
microstructure of field-driven Solid-on-Solid interfaces depends strongly on
the dynamics. For nonconservative dynamics with transition rates that factorize
into parts dependent only on the changes in interaction energy and field
energy, respectively (soft dynamics), the intrinsic interface width is
field-independent. For non-factorizing rates, such as the standard Glauber and
Metropolis algorithms (hard dynamics), it increases with the field.
Consequences for the interface velocity and its anisotropy are discussed.Comment: 9 pages LaTex with imbedded .eps figs. Minor revision
Recommended from our members
3+2 + X: what is the most useful depolarization input for retrieving microphysical properties of non-spherical particles from lidar measurements using the spheroid model of Dubovik et al. (2006)?
The typical multiwavelength aerosol lidar data set for inversion of optical to microphysical parameters is composed of three backscatter coefficients (β) at 355, 532, and 1064 nm and two extinction coefficients (α) at 355 and 532 nm. This data combination is referred to as a 3β+2α or 3+2 data set. This set of data is sufficient for retrieving some important microphysical particle parameters if the particles have spherical shape. Here, we investigate the effect of including the particle linear depolarization ratio (δ) as a third input parameter for the inversion of lidar data. The inversion algorithm is generally not used if measurements show values of δ that exceed 0.10 at 532 nm, i.e. in the presence of non-spherical particles such as desert dust, volcanic ash, and, under special circumstances, biomass-burning smoke. We use experimental data collected with instruments that are capable of measuring δ at all three lidar wavelengths with an inversion routine that applies the spheroidal light-scattering model of Dubovik et al. (2006) with a fixed axis-ratio distribution to replicate scattering properties of non-spherical particles. The inversion gives the fraction of spheroids required to replicate the optical data as an additional output parameter. This is the first systematic test of the effect of using all theoretically possible combinations of δ taken at 355, 532, and 1064 nm as input in the lidar data inversion. We find that depolarization information of at least one wavelength already provides useful information for the inversion of optical data that have been collected in the presence of non-spherical mineral dust particles. However, any choice of δλ will give lower values of the single-scattering albedo than the traditional 3+2 data set. We find that input data sets that include δ355 give a spheroid fraction that closely resembles the dust ratio we obtain from using β532 and δ532 in a methodology applied in aerosol-type separation. The use of δ355 in data sets of two or three δλ reduces the spheroid fraction that is retrieved when using δ532 and δ1064. Use of the latter two parameters without accounting for δ355 generally leads to high spheroid fractions that we consider not trustworthy. The use of three δλ instead of two δλ, including the constraint that one of these is measured at 355 nm does not provide any advantage over using 3+2+δ355 for the observations with varying contributions of mineral dust considered here. However, additional measurements at wavelengths different from 355 nm would be desirable for application to a wider range of aerosol scenarios that may include non-spherical smoke particles, which can have values of δ355 that are indistinguishable from those found for mineral dust. We therefore conclude that – depending on measurement capability – the future standard input for inversion of lidar data taken in the presence of mineral dust particles and using the spheroid model of Dubovik et al. (2006) might be 3+2+δ355 or 3+2+δ355+δ532.Peer reviewe
Design comparison of cesium and potassium vapor turbine-generator units for space power
Design comparison of cesium and potassium vapor turbogenerator units for space power plant
Stochastic Dominance Analysis of Bioenergy Crops as a Production Alternative on an East Tennessee Beef and Crop Farm
This study evaluated prices and incentives for switchgrass stated in a biorefinery’s contract terms that induce switchgrass production on an east Tennessee representative farm when compared with traditional enterprises. The alternate contract terms imitated current subsidies/incentives offered as well as incentives and cost share terms not in the BCAP.switchgrass, contract, risk aversion, net return, Farm Management, Production Economics, Resource /Energy Economics and Policy, Q12,
- …