365 research outputs found
Large scale numerical investigation of excited states in poly(phenylene)
A density matrix renormalisation group scheme is developed, allowing for the
first time essentially exact numerical solutions for the important excited
states of a realistic semi-empirical model for oligo-phenylenes. By monitoring
the evolution of the energies with chain length and comparing them to the
experimental absorption peaks of oligomers and thin films, we assign the four
characteristic absorption peaks of phenyl-based polymers. We also determine the
position and nature of the nonlinear optical states in this model.Comment: RevTeX, 10 pages, 4 eps figures included using eps
Numerical and approximate analytical results for the frustrated spin-1/2 quantum spin chain
We study the frustrated phase of the quantum spin-
system with nearest-neighbour and next-nearest-neighbour isotropic exchange
known as the Majumdar-Ghosh Hamiltonian. We first apply the coupled-cluster
method of quantum many-body theory based on a spiral model state to obtain the
ground state energy and the pitch angle. These results are compared with
accurate numerical results using the density matrix renormalisation group
method, which also gives the correlation functions. We also investigate the
periodicity of the phase using the Marshall sign criterion. We discuss
particularly the behaviour close to the phase transitions at each end of the
frustrated phase.Comment: 17 pages, Standard Latex File + 7 PostScript figures in separate
file. Figures also can also be requested from [email protected]
Density Matrices for a Chain of Oscillators
We consider chains with an optical phonon spectrum and study the reduced
density matrices which occur in density-matrix renormalization group (DMRG)
calculations. Both for one site and for half of the chain, these are found to
be exponentials of bosonic operators. Their spectra, which are correspondingly
exponential, are determined and discussed. The results for large systems are
obtained from the relation to a two-dimensional Gaussian model.Comment: 15 pages,8 figure
Quarks, Gluons and Frustrated Antiferromagnets
The Contractor Renormalization Group method (CORE) is used to establish the
equivalence of various Hamiltonian free fermion theories and a class of
generalized frustrated antiferromagnets. In particular, after a detailed
discussion of a simple example, it is argued that a generalized frustrated
SU(3) antiferromagnet whose single-site states have the quantum numbers of
mesons and baryons is equivalent to a theory of free massless quarks.
Furthermore, it is argued that for slight modification of the couplings which
define the frustrated antiferromagnet Hamiltonian, the theory becomes a theory
of quarks interacting with color gauge-fields.Comment: 21 pages, Late
Search of low-dimensional magnetics on the basis of structural data: spin-1/2 antiferromagnetic zigzag chain compounds In2VO5, beta-Sr(VOAsO4)2,(NH4,K)2VOF4 and alpha-ZnV3O8
A new technique for searching low-dimensional compounds on the basis of
structural data is presented. The sign and strength of all magnetic couplings
at distances up to 12 A in five predicted new antiferromagnetic zigzag spin-1/2
chain compounds In2VO5, beta-Sr(VOAsO4)2, (NH4)2VOF4, K2VOF4 and alpha-ZnV3O8
were calculated. It was stated that in the compound In2VO5 zigzag spin chains
are frustrated, since the ratio (J2/J1) of competing antiferromagnetic (AF)
nearest- (J1) and AF next-to-nearest-neighbour (J2) couplings is equal to 1.68
that exceeds the Majumdar-Ghosh point by 1/2. In other compounds the zigzag
spin chains are AF magnetically ordered single chains as value of ratios J2/J1
is close to zero. The interchain couplings were analyzed in detail.Comment: 14 pages, 6 figure, 1 table, minor change
A density matrix renormalisation group algorithm for quantum lattice systems with a large number of states per site
A variant of White's density matrix renormalisation group scheme which is
designed to compute low-lying energies of one-dimensional quantum lattice
models with a large number of degrees of freedom per site is described. The
method is tested on two exactly solvable models---the spin-1/2
antiferromagnetic Heisenberg chain and a dimerised XY spin chain. To illustrate
the potential of the method, it is applied to a model of spins interacting with
quantum phonons. It is shown that the method accurately resolves a number of
energy gaps on periodic rings which are sufficiently large to afford an
accurate investigation of critical properties via the use of finite-size
scaling theory.Comment: RevTeX, 8 pages, 2 figure
Excited states of linear polyenes
We present density matrix renormalisation group calculations of the Pariser-
Parr-Pople-Peierls model of linear polyenes within the adiabatic approximation.
We calculate the vertical and relaxed transition energies, and relaxed
geometries for various excitations on long chains. The triplet (3Bu+) and even-
parity singlet (2Ag+) states have a 2-soliton and 4-soliton form, respectively,
both with large relaxation energies. The dipole-allowed (1Bu-) state forms an
exciton-polaron and has a very small relaxation energy. The relaxed energy of
the 2Ag+ state lies below that of the 1Bu- state. We observe an attraction
between the soliton-antisoliton pairs in the 2Ag+ state. The calculated
excitation energies agree well with the observed values for polyene oligomers;
the agreement with polyacetylene thin films is less good, and we comment on the
possible sources of the discrepencies. The photoinduced absorption is
interpreted. The spin-spin correlation function shows that the unpaired spins
coincide with the geometrical soliton positions. We study the roles of
electron-electron interactions and electron-lattice coupling in determining the
excitation energies and soliton structures. The electronic interactions play
the key role in determining the ground state dimerisation and the excited state
transition energies.Comment: LaTeX, 15 pages, 9 figure
Electron-lattice relaxation, and soliton structures and their interactions in polyenes
Density matrix renormalisation group calculations of a suitably parametrised
model of long polyenes (polyacetylene oligomers), which incorporates both long
range Coulomb interactions and adiabatic lattice relaxation, are presented. The
triplet and 2Ag states are found to have a 2-soliton and 4-soliton form,
respectively, both with large relaxation energies. The 1Bu state forms an
exciton-polaron and has a very small relaxation energy. The relaxed energy of
the 2Ag state lies below that of the 1Bu state. The soliton/anti-soliton pairs
are bound.Comment: RevTeX, 5 pages, 4 eps figures included using epsf. To appear in
Physical Review Letters. Fig. 1 fixed u
A numerical method for detecting incommensurate correlations in the Heisenberg zigzag ladder
We study two Heisenberg spin-1/2 chains coupled by a frustrating ``zigzag''
interaction. We are particularly interested in the regime of weak interchain
coupling, which is difficult to analyse by either numerical or analytical
methods. Previous density matrix renormalisation group (DMRG) studies of the
isotropic model with open boundary conditions and sizeable interchain coupling
have established the presence of incommensurate correlations and of a spectral
gap. By using twisted boundary conditions with arbitrary twist angle, we are
able to determine the incommensurabilities both in the isotropic case and in
the presence of an exchange anisotropy by means of exact diagonalisation of
relatively short finite chains of up to 24 sites. Using twisted boundary
conditions results in a very smooth dependence of the incommensurabilities on
system size, which makes the extrapolation to infinite systems significantly
easier than for open or periodic chains.Comment: 6 pages, including 7 figure
Density matrix renormalisation group study of the correlation function of the bilinear-biquadratic spin-1 chain
Using the recently developed density matrix renormalization group approach,
we study the correlation function of the spin-1 chain with quadratic and
biquadratic interactions. This allows us to define and calculate the
periodicity of the ground state which differs markedly from that in the
classical analogue. Combining our results with other studies, we predict three
phases in the region where the quadratic and biquadratic terms are both
positive.Comment: 13 pages, Standard Latex File + 5 PostScript figures in separate (New
version with SUBSTANTIAL REVISIONS to appear in J Phys A
- …