144 research outputs found

    UV continuum emission and diagnostics of hydrogen-containing non-equilibrium plasmas

    Get PDF
    For the first time the emission of the radiative dissociation continuum of the hydrogen molecule (a3Σg+b3Σu+a^{3}\Sigma_{g}^{+} \to b^{3}\Sigma_{u}^{+} electronic transition) is proposed to be used as a source of information for the spectroscopic diagnostics of non-equilibrium plasmas. The detailed analysis of excitation-deactivation kinetics, rate constants of various collisional and radiative transitions and fitting procedures made it possible to develop two new methods of diagnostics of: (1) the ground X1Σg+X^{1}\Sigma_{g}^{+} state vibrational temperature TvibT_{\text{vib}} from the relative intensity distribution, and (2) the rate of electron impact dissociation (d[\mbox{H_{2}}]/dt)_{\text{diss}} from the absolute intensity of the continuum. A known method of determination of TvibT_{\text{vib}} from relative intensities of Fulcher-α\alpha bands was seriously corrected and simplified due to the revision of dad \to a transition probabilities and cross sections of dXd \gets X electron impact excitation. General considerations are illustrated with examples of experiments in pure hydrogen capillary-arc and H2_{2}+Ar microwave discharges.Comment: REVTeX, 25 pages + 12 figures + 9 tables. Phys. Rev. E, eprint replaced because of resubmission to journal after referee's 2nd repor

    Quantum dynamics in strong fluctuating fields

    Full text link
    A large number of multifaceted quantum transport processes in molecular systems and physical nanosystems can be treated in terms of quantum relaxation processes which couple to one or several fluctuating environments. A thermal equilibrium environment can conveniently be modelled by a thermal bath of harmonic oscillators. An archetype situation provides a two-state dissipative quantum dynamics, commonly known under the label of a spin-boson dynamics. An interesting and nontrivial physical situation emerges, however, when the quantum dynamics evolves far away from thermal equilibrium. This occurs, for example, when a charge transferring medium possesses nonequilibrium degrees of freedom, or when a strong time-dependent control field is applied externally. Accordingly, certain parameters of underlying quantum subsystem acquire stochastic character. Herein, we review the general theoretical framework which is based on the method of projector operators, yielding the quantum master equations for systems that are exposed to strong external fields. This allows one to investigate on a common basis the influence of nonequilibrium fluctuations and periodic electrical fields on quantum transport processes. Most importantly, such strong fluctuating fields induce a whole variety of nonlinear and nonequilibrium phenomena. A characteristic feature of such dynamics is the absence of thermal (quantum) detailed balance.Comment: review article, Advances in Physics (2005), in pres

    Einsatz der Impedanzspektroskopie in der Brennstoffzellenforschung

    Get PDF
    Da Brennstoffzellen eine umweltfreundliche Energiewandlung bei vergleichsweise sehr hohen Wirkungsgraden ermöglichen, gewinnen sie für zukünftige Energiekonversionssysteme zuneh¬mend an Bedeutung. Für mobile Anwendungen sind aufgrund ihrer niedrigen Betriebstemperatur insbesondere die Membranbrennstoffzellen (PEFC) geeignet. Jedoch wird ein wirtschaftlicher Einsatz von Brennstoffzellen erst möglich sein, wenn es gelingt, neben der Steigerung der Ener¬gie- und Leistungsdichte auch kostengünstige Herstellungsverfahren für die Zellkompo¬nenten, Brennstoffe und Elektrodenmaterialien (Katalysatoren) zu entwickeln. Zur Charakterisierung von Brennstoffzellen und Zellkomponenten wird eine ganze Reihe von verschiedenen Messverfahren eingesetzt. Neben ex-situ oberflächenanalytischen Charakterisie¬rungsmethoden wie Rasterelektronenmikroskopie (REM) und Energiedispersive Röntgenspekt¬roskopie (EDX), Porosimetrie, Röntgendiffraktometrie (XRD) Röntgenphotoelektronenspektro¬skopie (XPS) werden noch in-situ elektrochemische Charakterisierungsmethoden eingesetzt. Die einfachste und daher wohl die am häufigsten verwendete elektrochemische Charakterisie¬rungs¬methode ist die Aufnahme einer Strom-Spannungskennlinie (U-i Kennlinie), die durch elektro¬chemische, elektronische und ionische Leitfähigkeiten, sowie bei hohen Stromdichten zunehmend auch von Diffusionstermen bestimmt wird. Eine quantitative und qualitative Tren¬nung dieser Terme ist nicht nur von grundsätzlichem Interesse, sondern kann auch dazu beitra¬gen, die Elektroden-Membran-Elektroden-Einheiten (MEA) und Zelldesign gezielt zu verbessern. Die elektrochemische Impedanzspektroskopie (EIS) ist dafür besonders gut geeignet, da nach Auswertung der über einen weiten Frequenzbereich gemessenen Elektrodenimpedanz bzw. Zellimpedanz mit einem Elektrodenmodell (Ersatzschaltbild) diese Größen simultan und in einem großen Potenzialbereich bzw. Stromdichtebereich bestimmt werden können
    corecore